Spatial pattern of ASG-EUPOS sites - Publication - Bridge of Knowledge

Search

Spatial pattern of ASG-EUPOS sites

Abstract

The article presents the spatial pattern analysis of the ASG-EUPOS permanent GNSS stations in Poland. Using different methods and tools (nearest neighbour, Riplay’s K-function, morphology of Thiessen polygons) we proved that the station distribution model changes within scales. At short distances up to 65 km, which are typical lengths in the network, stations are irregularly dispersed. Increasing this distance to 130 km and over could result in a clustered pattern. The Thiessen polygon area in 72% depends on the level of urbanization, especially coverage of forested and built-up areas as well as the density of the transportation network. The smallest density of the ASG-EUPOS sites is one station over 10,000 sq. km, which is two times more than is stated in the national regulations. The mean distance from ASG-EUPOS location to the nearest station is about 41.5 km.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 43 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Open Geosciences no. 9, edition 1, pages 613 - 621,
ISSN: 2391-5447
Language:
English
Publication year:
2017
Bibliographic description:
Calka B., Bielecka E., Figurski M.: Spatial pattern of ASG-EUPOS sites// Open Geosciences. -Vol. 9, iss. 1 (2017), s.613-621
DOI:
Digital Object Identifier (open in new tab) 10.1515/geo-2017-0046
Bibliography: test
  1. Scott L. M., Janikas M. V., A.1 Spatial Statistics in ArcGIS. In: Fisher M.M. and Getis A. (Eds.) Handbook of Applied Spatial Analysis Software Tools, Methods and Applications. Springer- Verlag Berlin Heidelberg, 2010, 27-41, DOI 10.1007/978-3-642- 03647-7_2 open in new tab
  2. Dacey M. F., A note on the derivation of nearest neighbour dis- tances. Journal of Regional Science, 1960, 2, 81-7 open in new tab
  3. Getis A., Temporal land-use pattern analyses with the use of nearest neighbour and quadrat methods. Annals of the Asso- ciation of the American Geographers, 1964, 54, 391-398 open in new tab
  4. Haggett P., Cliff A. D., Frey A. E., Locational methods in human geography, 2nd edition. Edward Arnold, London, 1977
  5. Diggle P. J., Statistical analysis of spatial point patterns. Aca- demic Press, London, 1983
  6. Getis A., Second-order analysis of point patterns: the case of Chicago as a multi-center urban region. The Professional Geog- rapher, 1983, 35, 73-80 open in new tab
  7. Ripley B. D., Modelling spatial patterns. Journal of the Royal Sta- tistical Society, 1977, B 39, 172-212 open in new tab
  8. Kaplan M.O., Ayan T., Erol S., The Effects of Geodetic Configu- ration of the Network in Deformation Analysis. Proceedings of FIG Working Week 2004, Athens, Greece, May 22-27, 2004, TS29 Positioning and Measurement Technologies and Practices III - Applications and Processing. Paper Number TS29.6
  9. Bielecka E., Pokonieczny K., Kamiński P., Study on spatial dis- tribution of horizontal geodetic control points in rural areas. Acta Geodaetica et Geophysica, 2014, 49(3), 357-368, doi: 10.1007/s40328-014-0056-6 open in new tab
  10. Pokonieczny K., Calka B., Bielecka E., Kaminski P., Model- ing Spatial Relationships between Geodetic Control Points and Land Use with Regards to Polish Regulation. Proceedings of 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2016, 176-180, doi: 10.1109/BGC.Geomatics.2016.39 open in new tab
  11. Eshagh M., Kiamerh R., A strategy for optimum designing of the geodetic networks from the cost, reliability and precision views. Acta Geod.Geoph. Hung., 2007, 42(3), 297-308, doi: 10.1556/AGeod.42.2007.3.4 open in new tab
  12. Pokonieczny K., Bielecka E., Kamiński P., Analysis of spatial dis- tribution of geodetic control points and land cover. 14th Geo- Conference on Informatics, Geoinformatics and Remote Sens- ing Conference Proceedings, 2014, vol II, 49-56. ISBN 978-619- 7105-11-7, ISSN 1314-2704, doi: 10.5593/sgem2014B22 open in new tab
  13. Bruyninx C., Altamimi Z., Caporali A., Kenyeres A., Lidberg M., Stangl G., Torres J.A., Guidelines for EUREF Densifications, 2013. Available electronically at http://www.epncb.oma.be//
  14. Wanninger L., Real-Time Differential GPS-Error Modelling in Re- gional Reference Station Networks. Proc. IAG Symp 118, Rio de Janeiro, 1997, 86-92 open in new tab
  15. Petovello M., Dabove P., De Agostino M., GNSS Solutions: Net- work RTK and reference station configuration, Inside GNSS November/December 2011, 24-29
  16. Eckl M. C., Snay R. A., Soler T., Cline M. W., Mader G. L., Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. Journal of Geodesy, 2001, 75, 633-640, doi:10.1007/s001900100204 open in new tab
  17. Bakuła M., Przestrzelski P., Kazmierczak R., Reliable Technol- ogy of Centimeter GPS/GLONASS Surveying in Forest Environ- ments, IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2, 1029-1038 open in new tab
  18. Lee I., Ge L., The performance of RTK-GPS for surveying under challenging environment al conditions. Earth Planets Space, 2006, 58, 515-522 open in new tab
  19. Ackermann S., Angrisano A., Del Pizzo S., Gaglione S., Gioia C., Troisi S., Digital Surface Models for GNSS Mission Planning in Critical Environments. Journal of Surveying Engineering, 2013, 1943-5428 open in new tab
  20. Pirti A., Gümü K., Erkaya H., Gürsel Hoba R., Evaluating re- peatability of RTK GPS/GLONASS near/under forest environ- ment. Croatian Journal of Forest Engineering, 2010, 31(1), 23-33 open in new tab
  21. Yoshimura T., Hasehawa H., Comparing the precision and ac- curacy of GPS positioning in forest areas. Journal of Forest Re- search, 2003, 8(3), 147-152 open in new tab
  22. Grejner-Brzezinska D.A., Asce M., Arslan N., Wielgosz P., Hong Ch-Ki, Network Calibration for Unfavorable Reference- Rover Geometry in Network-Based RTK: Ohio CORS Case open in new tab
  23. Study, Journal of Surveying Engineering, 2009, 135 (3), doi: http://dx.doi.org/10.1061/(ASCE)0733-9453(2009)135:3(90) open in new tab
  24. Han J.Y., Wu Y., Liu R.Y., Determining the optimal site location of GNSS base stations, Bol Cienc Geod, 2012, 18(1), 154-169, doi: 10.1590/S1982-21702012000100009. open in new tab
  25. Wanninger L., The Performance of Virtual Reference Stations in Active Geodetic GPS-networks under Solar Maximum Condi- tions, Proc. ION GPS 99, Nashville TN, 1999, 1419-1427 open in new tab
  26. Vollath U., Landau H., Chen X., Doucet K., Pagels Ch., Network RTK Versus Single Base RTK -Understanding the Error Charac- teristics, Proceedings of the 15th International Technical Meet- ing of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, September 2002, 2774-2781
  27. Han, J.Y.; Li, P.H., Utilizing 3-D topographical information for the quality assessment of a satellite surveying. Applied Geomatics, 2010, 2(1), 21-32, doi:10.1007/s12518-010-0016-y open in new tab
  28. Suci, F. M, Faggion, P. L., Stability analysis of geode- tic network of Salto Caxias hydroelectric power station from GPS data. Bol. Ciênc. Geod., 2012, 18(4), 564-582, http://dx.doi.org/10.1590/S1982-21702012000400004 open in new tab
  29. Zhang K.; Liu G. J.; Wu F.; Densley L.; Retscher G., An investiga- tion of the signal performance of the current and future GNSS in typical urban canyons in Australia using a high fidelity 3D urban model. Location based services and telecartography II: from sensor fusion to ubiquitous LBS, Springer, Heidelberg, 2008, 407-420 open in new tab
  30. Bogusz J., Figurski M., Kroszczyński K., Szafranek K., Investi- gation of environmental influences to GNNS coordinates. Acta Geodynamica et Geomaterialia, 2011, 8, 1(161), 5-15
  31. Bosy J., Global, Regional and National Geodetic Reference Frames for Geodesy and Geodynamics. Pure Appl. Geophys., 2014, 171, 783-808, doi: 10.1007/s00024-013-0676-8 open in new tab
  32. Amiri-Simkooei A. R., Mohammadloo T. H., Argus, D. F., Multi- variate analysis of GPS position time series of JPL second re- processing campaign. J Geod., 2017, doi:10.1007/s00190-016- 0991-9 open in new tab
  33. Razeghi S.M., Amiri-Simkooei A.R., Sharifi M.A., Coloured noise effects on deformation parameters of permanent GPS networks. Geophys J Int., 2016, 204 (3), 1843-1857, doi: https://doi.org/10.1093/gji/ggv499 open in new tab
  34. Firuzabardi D., King R.W. GPS precision as a function of session duration and reference freme using Multi-point software. GPS Solution, 2011, doi: 10.1007/s10291-011-0218-8. open in new tab
  35. Johnson H.O., Wyatt F.K., Geodetic network design for fault- mechanics study. Manuscripta Geodetica, 1994, 19, 309-323
  36. Horvath T., Leitmannova K., Nagi J., Kollo K., Wubbena G., Guide- lines for single site design. International EUPOS Steering Com- mittee, Berlin, Germany, 2008
  37. Wang Ch., Feng Y., Higgins M., Cowie B.,Assessment of commer- cial network RTK user positioning performance over long inter- station distance. Journal of Global Positioning systems, 2010, 9(1), 78-89
  38. Bosy J., Krynski J., Reference frames and reference net- works. Geodesy and Cartography, 2015, 64 (2), 147-176, doi:10.1515/geocart-2015-0011 open in new tab
  39. Multifunctional precise satellite positioning system ASGEUPOS in Poland, 2016, http://www.asgeupos.pl open in new tab
  40. Zieliński J. B., Łyszkowicz A., Jaworski L., Śwrątek A., Zdunek R., Gelo S., Polref-96 the New Geodetic Reference Frame for Poland. In: Brunner F. K. (Ed), Advances in Positioning and Reference Frames, IAG Scientific Assembly Rio de Janeiro, Brazil, Septem- ber 3-9, 1997, 118, 161-166, ISBN: 978-3-642-08425-6 (Print) 978-3-662-03714-0 (Online) open in new tab
  41. Regulation 2012b. Regulation of the Ministry of Administra- tion and Digitization, Regarding the Geodetic, Gravimetric and Magnetic Control Networks [in Polish: W sprawie osnów geodezyjnych, grawimetrycznych i magnetycznych]. Journal of Laws on 2012, item 352,Warsaw open in new tab
  42. Kadaj R., The combined geodetic network adjusted on the ref- erence ellipsoid -a comparison of three functional models for GNSS observations. Geodesy and Cartography, 2016, 65(2), 229-257, doi: https://doi.org/10.1515/geocart-2016-0013 open in new tab
  43. Li F., Zhang L., Comparison of point pattern analysis meth- ods for classifying the spatial distributions of spruce- fir stands in the north-east USA. Forestry, 2007, 80(3), doi:10.1093/forestry/cpm010 open in new tab
  44. Getis A, Boots B., Models of spatial processes. Cambridge (UK), Cambridge University Press, 1978
  45. Klein R., Abstract Voronoi diagrams and their applications. Lecture Notes in Computer Science, 1989, 333, 148-157, doi:10.1007/3-540-50335-8_31. ISBN 3-540-52055-4. open in new tab
  46. Chiu S. N., Spatial Point Pattern Analysis by using Voronoi Dia- grams and Delaunay Tessellations -A Comparative Study. Bio- metrical Journal, 2003, 45 (2003) 1, 367-376 open in new tab
  47. GUS, 2015. Statistical yearbook of the Republic of Poland 2015. open in new tab
  48. NGA, Performance specification Digital Terrain Elevation Data (DTED), National Geospatial-Intelligence Agency, 1996. Docu- ment MIL-PRF-89020A. open in new tab
  49. Heady B., Kroenung G., Rodarmel C., High reso- lution elevation data (HRE) specification overview, San Antonio 2009 ASPRS-MAPPS Fall Conference www.asprs.org/a/publications/proceedings/.../Heady.pdf
  50. Krynski J., Mank M., Grzyb M., Evaluation of digital terrain mod- els in Poland in view of a cm geoid modeling. Geodesy and Car- tography, 2005, 54(4), 155-175
  51. Klusek-Brzezinska M., Moscicka A., Debowska A., OGNIWO - Tool for Integration Different Spatial Data Resources. 13th SGEM GeoConference on Informatics, Geoinformatics And Remote Sensing, SGEM2013 Conference Proceedings, ISBN 978-954- 91818-9-0 / ISSN 1314-2704, June 16-22, 2013,1, pp. 481-488, DOI:10.5593/SGEM2013/BB2.V1/S08.024 open in new tab
  52. Stateczny A., Bodus-Olkowska I., Sensor data fusion tech- niques for environment modelling. Proceedings of Radar Sym- posium (IRS), 2015 16th International, 2015. IEEE Xplore, doi: 10.1109/IRS.2015.7226263 open in new tab
  53. Specht C., Skóra M., Comparative analysis of selected ac- tive geodetic networks [in Polish: Analiza porównawcza wybranych aktywnych sieci geodezyjnych].
  54. Zeszyty Naukowe Akademii Marynarki Wojennej, 2009, XLX, 3 (178), 39-54, doi: 10.1061/(ASCE)SU.1943-5428.0000081 open in new tab
  55. Weclawowicz G., Geografia społeczna miast: zróżnicowania społeczno-przestrzenne. PWN, Warsaw, 2003 open in new tab
  56. Szafranek K., The problem of temporal validity of reference co- ordinates in the context of reliability of the ETRS89 system real- ization in Poland. Artificial Satellites, 2012, 47(4), 177-188, doi: 10.2478/v10018-012-0023-9 open in new tab
Verified by:
Gdańsk University of Technology

seen 87 times

Recommended for you

Meta Tags