Spatiotemporal dynamics of the active perirheic zone in a natural wetland floodplain - Publication - Bridge of Knowledge

Search

Spatiotemporal dynamics of the active perirheic zone in a natural wetland floodplain

Abstract

Abstract The ecologically and biogeochemically significant perirheic zone is a part of the floodplain where waters originating from both the river and adjacent floodplain are present. In this study, we investigate the spatiotemporal dynamics of the active perirheic zone, i.e. river and floodplain waters and their transient mixing extent. This is achieved by using the Hydraulic Mixing-Cell method, a complement to a fully integrated surface-subsurface hydrological model, in the Biebrza catchment, north-east Poland. The model performance is verified against hydrological and hydrochemical datasets. The simulations show that overbank flooding river water is unable to penetrate deeply into the floodplain due to the presence of floodplain water. However, the active perirheic zone moves towards the floodplain and back within a buffer of at least one kilometer from its initial position located approximately 0 to 2.5 km from the Biebrza River. The active perirheic zone is also present further away from the river due to the discharge of tributaries and surface runoff. The active perirheic zone exhibits multi-directional movement, and can reappear in different places after a period of time. Effectively, during the flooding period, the active perirheic zone moves over 38% of the floodplain area, while the maximum daily extent is 24% of the floodplain. These dynamics imply that biogeochemical processes related to the perirheic zone, e.g. denitrification, also vary in space and time. Due to the strong correlation of the perirheic zone extent with the meteorologically dependent variables, especially the snowmelt water extent, it is vulnerable to climate change.

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Cite as

Full text

download paper
downloaded 29 times
Publication version
Accepted or Published Version
License
Copyright (2019. American Geophysical Union)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
WATER RESOURCES RESEARCH no. 55, pages 9544 - 9562,
ISSN: 0043-1397
Language:
English
Publication year:
2019
Bibliographic description:
Berezowski T., Partington D., Chormański J., Batelaan O.: Spatiotemporal dynamics of the active perirheic zone in a natural wetland floodplain// WATER RESOURCES RESEARCH -Vol. 55,iss. 11 (2019), s.9544-9562
DOI:
Digital Object Identifier (open in new tab) 10.1029/2019wr024777
Bibliography: test
  1. Aalto, R., Maurice-Bourgoin, L., Dunne, T., Montgomery, D. R., Nittrouer, C. A., & Guyot, J.-L. (2003). Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation. Nature, 425(6957), 493-497. open in new tab
  2. Alaghmand, S., Beecham, S., Woods, J., Holland, K., Jolly, I., Hassanli, A., & Nouri, H. (2016). Quantifying the impacts of artificial flooding as a salt interception measure on a river-floodplain interaction in a semi-arid saline floodplain. Environmental Modelling & Software, 79, 167-183. open in new tab
  3. Alcamo, J., Flörke, M., & Märker, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. open in new tab
  4. Aquanty (2013). HydroGeoSphere User Manual. Waterloo, Canada: Aquanty Inc.
  5. Banaszuk, H. (2004). Kotlina Biebrzanska i Biebrzanski Park Narodowy. Bialystok: Ekonomia i Srodowisko. in Polsih Bates, P., & De Roo, A. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1-2), 54-77.
  6. Berezowski, T., D. Partington, J. Chormański, & Batelaan, O. (2018b), Surface water source fractions and hydraulic heads for Biebrza River catchment in water year 2002, https://doi.org/10.4121/uuid:b6245d75-0908-43ae-97ce-8f58f3ae8f48. 10.1029/2019WR024777 open in new tab
  7. Berezowski, T., Szcześniak, M., Kardel, I., Michałowski, R., Okruszko, T., Mezghani, A., & Piniewski, M. (2016). CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins. Earth System Science Data, 8(1), 127-139. open in new tab
  8. Berezowski, T., Wassen, M., Szatyłowicz, J., Chormański, J., Ignar, S., Batelaan, O., & Okruszko, T. (2018a). Wetlands in flux: looking for the drivers in a central European case. Wetlands Ecology and Management, 26(5), 849-863. open in new tab
  9. Beumer, V., van Wirdum, G., Beltman, B., Griffioen, J., & Verhoeven, J. (2007). Biogeochemical consequences of winter flooding in brook valleys. Biogeochemistry, 86(1), 105-121. open in new tab
  10. Bonnet, M.-P., Pinel, S., Garnier, J., Bois, J., Boaventura, G. R., Seyler, P., & Marques, D. M. (2017). Amazonian floodplain water balance based on modelling and analyses of hydrologic and electrical conductivity data. Hydrological Processes, 31(9), 1702-1718. open in new tab
  11. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. open in new tab
  12. Brunner, P., & Simmons, C. T. (2012). Hydrogeosphere: A fully integrated, physically based hydrological model. Ground Water, 50(2), 170-176. open in new tab
  13. Chormański, J., Okruszko, T., Ignar, S., Batelaan, O., Rebel, K., & Wassen, M. (2011). Flood mapping with remote sensing and hydrochemistry: a new method to distinguish the origin of flood water during floods. Ecological Engineering, 37(9), 1334-1349. Commission of the European Communities (2013), Corine land-cover, date accessed: 2013-10-12. open in new tab
  14. Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241-252. open in new tab
  15. Forshay, K. J., & Stanley, E. H. (2005). Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry, 75(1), 43-64. open in new tab
  16. Freeze, R., & Harlan, R. (1969). Blueprint for a physically-based, digitally-simulated hydrologic response model. Journal of Hydrology, 9(3), 237-258. open in new tab
  17. Fritz, K. M., Schofield, K. A., Alexander, L. C., McManus, M. G., Golden, H. E., Lane, C. R., et al. (2018). Physical and chemical connectivity of streams and riparian wetlands to downstream waters: A synthesis. JAWRA Journal of the American Water Resources Association, 54(2), 323-345. open in new tab
  18. Garner, G., Loon, A. F. V., Prudhomme, C., & Hannah, D. M. (2015). Hydroclimatology of extreme river flows. Freshwater Biology, 60(12), 2461-2476. open in new tab
  19. Glaser, B., Klaus, J., Frei, S., Frentress, J., Pfister, L., & Hopp, L. (2016). On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum. Water Resources Research, 52, 8317-8342. https://doi. org/10.1002/2015WR018414 open in new tab
  20. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and nse performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. open in new tab
  21. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., et al. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816-821. open in new tab
  22. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65-70. open in new tab
  23. Hwang, H.-T., Park, Y.-J., Sudicky, E., & Forsyth, P. (2014). A parallel computational framework to solve flow and transport in integrated surface subsurface hydrologic systems. Environmental Modelling & Software, 61, 39-58. open in new tab
  24. Joint Research Center (2014), Agri4Cast Resources Portal, date accessed: 2014-11-02.
  25. Jones, C. N., Scott, D. T., Edwards, B. L., & Keim, R. F. (2014). Perirheic mixing and biogeochemical processing in flow-through and backwater floodplain wetlands. Water Resources Research, 50, 7394-7405. https://doi.org/10.1002/2014WR015647 open in new tab
  26. Junk, W., P. B. Bayley, and R. E. Sparks (1986), The flood pulse concept in river-floodplain systems, in International large river symposium. open in new tab
  27. Kaller, M., Keim, R., Edwards, B., Raynie Harlan, A., Pasco, T., Kelso, W., & Allen Rutherford, D. (2015). Aquatic vegetation mediates the relationship between hydrologic connectivity and water quality in a managed floodplain. Hydrobiologia, 760(1), 29-41. open in new tab
  28. Kaser, D., Graf, T., Cochand, F., McLaren, R., Therrien, R., & Brunner, P. (2014). Channel representation in physically based models coupling groundwater and surface water: Pitfalls and how to avoid them. Groundwater, 52(6), 827-836. open in new tab
  29. Keizer, F., der Lee, G. V., Schot, P., Kardel, I., Barendregt, A., & Wassen, M. (2018). Floodplain plant productivity is better predicted by particulate nutrients than by dissolved nutrients in floodwater. Ecological Engineering, 119, 54-63. open in new tab
  30. Keizer, F., Schot, P., Okruszko, T., Chormanski, J., Kardel, I., & Wassen, M. (2014). A new look at the flood pulse concept: The (ir)relevance of the moving littoral in temperate zone rivers. Ecological Engineering, 64(0), 85-99. open in new tab
  31. Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources, 29(7), 945-958. open in new tab
  32. Kristensen, K. J., & Jensen, S. E. (1975). A model for estimating actual evapotranspiration from potential evapotranspiration. Hydrology Research, 6(3), 170-188. open in new tab
  33. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583-621. open in new tab
  34. Lehner, B., Döll, P., Alcamo, J., Henrichs, T., & Kaspar, F. (2006). Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change, 75(3), 273-299. open in new tab
  35. Lewin, J., Ashworth, P. J., & Strick, R. J. P. (2017). Spillage sedimentation on large river floodplains. Earth Surface Processes and Landforms, 42(2), 290-305. open in new tab
  36. Li, L., Lambert, M. F., Maier, H. R., Partington, D., & Simmons, C. T. (2015). Assessment of the internal dynamics of the australian water balance model under different calibration regimes. Environmental Modelling & Software, 66, 57-68. open in new tab
  37. Li, L., Maier, H., Lambert, M., Simmons, C., & Partington, D. (2013). Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the lyne and hollick filter. Environmental Modelling & Software, 41, 163-175. open in new tab
  38. Li, L., Maier, H. R., Partington, D., Lambert, M. F., & Simmons, C. T. (2014). Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environmental Modelling & Software, 54, 39-52. open in new tab
  39. Liggett, J. E., Partington, D., Frei, S., Werner, A. D., Simmons, C. T., & Fleckenstein, J. H. (2015). An exploration of coupled surface-subsurface solute transport in a fully integrated catchment model. Journal of Hydrology, 529, 969-979. open in new tab
  40. Liggett, J. E., Werner, A. D., Smerdon, B. D., Partington, D., & Simmons, C. T. (2013). Fully integrated modeling of surface-subsurface solute transport and the effect of dispersion in tracer hydrograph separation. Water Resources Research, 50, 7750-7765. open in new tab
  41. Maurya, A. S., Shah, M., Deshpande, R. D., Bhardwaj, R. M., Prasad, A., & Gupta, S. K. (2011). Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrological Processes, 25(10), 1521-1530. open in new tab
  42. Mertes, L. A. K. (1997). Documentation and significance of the perirheic zone on inundated floodplains. Water Resour. Res., 33(7), 1749-1762. open in new tab
  43. Mertes, L. A. K. (2000). Inland Flood Hazards: Human, Riparian, and Aquatic Communities, chap. Inundation Hydrology, (pp. 145-166). Cambridge, UK: Cambridge University Press. open in new tab
  44. Park, E., & Latrubesse, E. M. (2015). Surface water types and sediment distribution patterns at the confluence of mega rivers: The Solimões-Amazon and Negro Rivers junction. Water Resources Research, 51, 6197-6213. https://doi.org/10.1002/2014WR016757 open in new tab
  45. Partington, D., Brunner, P., Frei, S., Simmons, C. T., Werner, A. D., Therrien, R., et al. (2013). Interpreting streamflow generation mecha- nisms from integrated surface-subsurface flow models of a riparian wetland and catchment. Water Resources Research, 49, 5501-5519. https://doi.org/10.1002/wrcr.20405 open in new tab
  46. Partington, D., Brunner, P., Simmons, C., Therrien, R., Werner, A., Dandy, G., & Maier, H. (2011). A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water-groundwater flow models. Environmental Modelling & Software, 26(7), 886-898. open in new tab
  47. Partington, D., Brunner, P., Simmons, C., Werner, A., Therrien, R., Maier, H., & Dandy, G. (2012). Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. Journal of Hydrology, 458-459, 28-39. open in new tab
  48. Penna, D., Engel, M., Mao, L., Dell'Agnese, A., Bertoldi, G., & Comiti, F. (2014). Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment. Hydrology and Earth System Sciences, 18(12), 5271-5288. Polish Geological Institute (2014), Ikar geoportal. open in new tab
  49. Racchetti, E., Bartoli, M., Soana, E., Longhi, D., Christian, R. R., Pinardi, M., & Viaroli, P. (2011). Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry, 103(1), 335-354. open in new tab
  50. Rango, A., & Martinec, J. (1995). Revisiting the degree-day method for snowmelt computations. JAWRA Journal of the American Water Resources Association, 31(4), 657-669. open in new tab
  51. Rudorff, C. M., Melack, J. M., & Bates, P. D. (2014a). Flooding dynamics on the lower amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resources Research, 50, 619-634. https://doi.org/10.1002/ 2013WR014091 open in new tab
  52. Rudorff, C. M., Melack, J. M., & Bates, P. D. (2014b). Flooding dynamics on the lower amazon floodplain: 2. Seasonal and interannual hydrological variability. Water Resources Research, 50, 635-649. https://doi.org/10.1002/2013WR014714 open in new tab
  53. Scaroni, A. E., Nyman, J. A., & Lindau, C. W. (2011). Comparison of denitrification characteristics among three habitat types of a large river floodplain: Atchafalaya River Basin, Louisiana. Hydrobiologia, 658(1), 17-25. open in new tab
  54. Schepper, G. D., Therrien, R., Refsgaard, J. C., He, X., Kjaergaard, C., & Iversen, B. V. (2017). Simulating seasonal variations of tile drainage discharge in an agricultural catchment. Water Resources Research, 53, 3896-3920. https://doi.org/10.1002/2016WR020209 open in new tab
  55. Schilling, O., Gerber, C., Partington, D. J., Purtschert, R., Brennwald, M. S., Kipfer, R., et al. (2017). Advancing physically-based flow simula- tions of alluvial systems through atmospheric noble gases and the novel 37ar tracer method. Water Resources Research, 53, 10,465-10,490. https://doi.org/10.1002/2017WR020754 open in new tab
  56. Schilling, O. S., Park, Y.-J., Therrien, R., & Nagare, R. M. (2019). Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw. Groundwater, 57(1), 63-74. open in new tab
  57. Scott, D. T., Keim, R. F., Edwards, B. L., Jones, C. N., & Kroes, D. E. (2014). Floodplain biogeochemical processing of floodwaters in the Atchafalaya River Basin during the Mississippi River flood of 2011. Journal of Geophysical Research: Biogeosciences, 119, 537-546. https:// doi.org/10.1002/2013JG002477 open in new tab
  58. Sebben, M. L., Werner, A. D., Liggett, J. E., Partington, D., & Simmons, C. T. (2013). On the testing of fully integrated surface-subsurface hydrological models. Hydrological Processes, 27(8), 1276-1285. open in new tab
  59. Shellberg, J. G., Brooks, A. P., Spencer, J., & Ward, D. (2013). The hydrogeomorphic influences on alluvial gully erosion along the Mitchell River fluvial megafan. Hydrological Processes, 27(7), 1086-1104. open in new tab
  60. Shewchuk, J. (1996). Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In M. Lin, & D. Manocha (Eds.), Lecture Notes in Computer Science, (Vol. 1148, pp. 203-222). Berlin Heidelberg: Springer. open in new tab
  61. Van Loon, A. F., Ploum, S. W., Parajka, J., Fleig, A. K., Garnier, E., Laaha, G., & Van Lanen, H. A. J. (2015). Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts. Hydrology and Earth System Sciences, 19(4), 1993-2016. open in new tab
  62. VanderKwaak, J. E., & Loague, K. (2001). Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resources Research, 37(4), 999-1013. open in new tab
  63. Walalite, T., Dekker, S. C., Keizer, F. M., Kardel, I., Schot, P. P., deJong, S. M., & Wassen, M. J. (2016). Flood water hydrochemistry patterns suggest floodplain sink function for dissolved solids from the Songkhram monsoon river (Thailand). Wetlands, 36(6), 995-1008. open in new tab
  64. Wassen, M. J., Okruszko, T., Kardel, I., Chormanski, J., Swiatek, D., Mioduszewski, W., et al. (2006). Eco-hydrological functioning of the Biebrza wetlands: Lessons for the conservation and restoration of deteriorated wetlands. Wetlands: Functioning, Biodiversity Conservation, and Restoration, 191, 285-310. open in new tab
  65. Weiler, M., Seibert, J., & Stahl, K. (2017). Magic components-why quantifying rain, snowmelt, and icemelt in river discharge is not easy. Hydrological Processes, 32(1), 160-166. https://doi.org/10.1002/hyp.11361 open in new tab
  66. Wilson, M., Bates, P., Alsdorf, D., Forsberg, B., Horritt, M., Melack, J., et al. (2007). Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophysical Research Letters, 34, L15404. https://doi.org/10.1029/2007GL030156 open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 90 times

Recommended for you

Meta Tags