The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions - Publication - Bridge of Knowledge

Search

The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions

Abstract

Some marine and offshore structure elements exploited in the water cannot be brought to the surface of the water as this will generate high costs, and for this reason, they require in-situ repairs. One of the repair techniques used in underwater pad welding conditions is a wet welding method. This paper presents an investigation of the abrasive wear resistance of coatings made in wet welding conditions with the use of two grades of covered electrodes—an electrode for underwater welding and a commercial general use electrode. Both electrodes were also used for manufacturing coatings in the air, which has been also tested. The Vickers HV10 hardness measurements are performed to demonstrate the correlation in abrasive wear resistance and the hardness of each specimen. The microscopic testing was performed. For both filler materials, the coatings prepared in a water environment are characterized by higher resistance to metal–mineral abrasion than coatings prepared in an air environment—0.61 vs. 0.44 for commercial usage electrode and 0.67 vs. 0.60 for underwater welding. We also proved that in the water, the abrasive wear was greater for specimens welded by the general use electrode, which results in a higher hardness of the layer surface. In the air welding conditions, the layer welded by the electrode for use in the water was characterized by a lower hardness and higher resistance to metal–mineral abrasion. The microstructure of the prepared layers is different for both the environment and both electrodes, which results in abrasive wear resistance.

Citations

  • 3 0

    CrossRef

  • 0

    Web of Science

  • 3 0

    Scopus

Cite as

Full text

download paper
downloaded 143 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Coatings no. 10,
ISSN: 2079-6412
Language:
English
Publication year:
2020
Bibliographic description:
Tomków J., Czupryński A., Fydrych D.: The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions// Coatings -Vol. 10,iss. 3 (2020), s.219-
DOI:
Digital Object Identifier (open in new tab) 10.3390/coatings10030219
Bibliography: test
  1. Dehghani, A.; Aslani, F. A review on defects in steel offshore structures and developed strengthening techniques. Structures 2019, 20, 635-657, doi:10.1016/j.istruc.2019.06.002. open in new tab
  2. Price, S.J.; Figueira, R.B. Corrosion protection systems and fatigue corrosion in offshore wind structures: Current status and future perspectives. Coatings 2017, 7, 25, doi:10.3390/coatings7020025. open in new tab
  3. Papatheocharis, T.; Saravanis, G.C.; Perdikaris, P.C.; Karamanos, S.A. Fatigue of welded tubular X-joints in offshore wind platforms. In International Conference on Offshore Mechanics and Arctic Engineering, Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, UK, 9-14 June 2019; Volume 4: Materials Technology; ASME New York, NY, USA: 2019, doi:10.1115/OMAE2019-95812. open in new tab
  4. Kong, X.; Lv, J.; Gao, N.; Peng, X.; Zhang, J. An experimental study of galvanic corrosion on an underwater weld joint. J. Coast. Res. 2018, 84, 63-68, doi:10.2112/SI84-009.1. open in new tab
  5. Liang, L.; Pang, Y.; Zhu, Z.; Tang, Y.; Xiang, Y. Influencing factors of various combinations of abrasion, cavitation and corrosion caused by multiphase flow impact. Trans. Can. Soc. Mech. Eng. 2019, 43, 130, doi:10.1139/tcsme-2019-0130. open in new tab
  6. Momber, A.W.; Marquardt, T. Protective coatings for offshore wind energy devices (OWEAs): A review. J. Coat. Technol. Res. 2018, 15, 13-40, doi:10.1007/s11998-017-9979-5. open in new tab
  7. López-Ortega, A.; Arana, J.L.; Rodriguez, E.; Bayón, R. Corrosion, wear and tribocorrosion performance of a thermally sprayed aluminum coating modified by plasma electrolytic oxidation technique for offshore submerged components protection. Corros. Sci. 2018, 143, 258-280, doi:10.1016/j.corsci.2018.08.001. open in new tab
  8. Łatka, L.; Szala, M.; Michalak, M.; Pałka, T. Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13% TiO2 coatings. Acta Phys. Pol. A 2019, 136, 342-347, doi:10.12693/APhysPolA.136.342. open in new tab
  9. He, X.; Song, R.G.; Kong, D.J. Microstructure and corrosion behaviours of composite coatings on S355 offshore steel prepared by laser cladding combined with micro-arc oxidation. Appl. Surf. Sci. 2019, 497, 143703, doi:10.1016/j.apsusc.2019.143703. open in new tab
  10. Li, Y.; Li, C.; Tang, S.; Zheng, Q.; Wang, J.; Zhang, Z.; Wang, Z. Interfacial bonding and abrasive wear behavior of iron matrix composite reinforced by ceramic particles. Materials 2019, 12, 3646, doi:10.3390/ma12223646. open in new tab
  11. Czupryński, A. Properties of Al2O3/TiO2and ZrO2/CaO flame-sprayed coatings. Mater. Tehnol./Mater. Technol. 2017, 51, 205-212, doi:10.17222/mit.2015.165. open in new tab
  12. Szala, M.; Dudek, A.; Maruszczyk, A.; Walczak, M.; Chmiel, J.; Kowal, M. Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance. Acta Phys. Pol. A 2019, 136, 335-341, doi:10.12693/APhysPolA.136.335. open in new tab
  13. Czupryński, A.; Górka, J.; Adamiak, M.; Tomiczek, B. Testing of flame sprayed Al2O3matrix coatings containing TiO2. Arch. Metall. Mater. 2016, 61, 1363-1370, doi:10.1515/amm-2016-0224. open in new tab
  14. Adamiak, M.; Czupryński, A.; Kopyść, A.; Monica, Z.; Olender, M.; Gwiazda, A. The Properties of Arc-Sprayed Aluminum Coatings on Armor-Grade Steel. Metals 2018, 8, 142, doi:10.3390/met8020142. open in new tab
  15. Chmielewski, T.; Siwek, P.; Chmielewski, M.; Piątkowska, A.; Grabias, A.; Golański, D. Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases. Metals 2018, 8, 1059, doi:10.3390/met8121059. open in new tab
  16. Czupryński, A. Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies. Materials 2019, 12, 3467, doi:10.3390/ma12213467. open in new tab
  17. Górka, J.; Czupryński, A.; Żuk, M.; Adamiak, M.; Kopyść, A. Properties and structure of deposited nanocrystalline coatings in relation to selected construction materials resistant to abrasive wear. Materials 2018, 11, 1-15, doi:10.3390/ma11071184. open in new tab
  18. Chmielewski, T.; Hudycz, M.; Krajewski, A.; Sałaciński, T.; Skowrońska, B.; Świercz, R. Structure investigation on titanium metallization coating deposited onto AlN ceramics substrate by means of friction surfacing proces. Coatings 2019, 9, 845, doi:10.3390/coatings9120845. open in new tab
  19. Liu, Y.; Li, C.X.; Huang, X.F.; Ma, K.; Luo, X.T.; Li, C.J. Effect of water environment on particle deposition of underwater cold spray. Appl. Surf. Sci. 2020, 506, 144542, doi:10.1016/j.apsusc.2019.144542. open in new tab
  20. Feng, X.; Cui, X.; Zheng, W.; Lu, B.; Dong, M.; Wen, X.; Zhao, Y.; Jin, G. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing. Opt. Laser Technol. 2019, 114, 140-145, doi:10.1016/j.optlastec.2019.01.034. open in new tab
  21. Wen, X.; Jin, G.; Cui, X.; Feng, X.; Lu, B.; Cai, Z.; Zhao, Y.; Fang, Y. Underwater wet laser cladding on 316L stainless steel: A protective material assisted method. Opt. Laser Technol. 2019, 111, 814-824, doi:10.1016/j.optlastec.2018.09.022. open in new tab
  22. Fu, Y.; Guo, N.; Zhou, L.; Cheng, Q.; Feng, J. Underwater wire-feed laser deposition of the Ti-6Al-4V titanium alloy. Mater. Des. 2020, 186, 108284, doi:10.1016/j.matdes.2019.108284. open in new tab
  23. Cevik, B. The effect of pure argon and mixed gases on microstructural and mechanical properties of S275 structural steel joined by flux-cored arc welding. Kov. Mater. 2020, 56, 81-87, doi:10.4149/km_2018_2_81. open in new tab
  24. Kik, T.; Moravec, J.; Nováková, I. Numerical simulations of X22CrMoV12-1 steel multilayer welding. Arch. Metall. Mater. 2019, 64, 1441-1448, doi:10.24425/amm.2019.130111. open in new tab
  25. Srisuwan, N.; Kumsri, N.; Yingsamphancharoen, T.; Kaewvilai, A. Hardfacing welded ASTM A572-based, high-strength low-alloy steel: Welding, characterization, and surface properties related to the wear resistance. Metals 2019, 9, 244, doi:10.3390/met9020244. open in new tab
  26. Triwanapong, S.; Angthong, A.; Kimapong, K. Interpass temperature affecting abrasive wear resistance of SMAW hard-faced weld metal on JIS-S50C carbon steel. Mater. Sci. Forum 2019, 950, 60-64, doi:10.4028/www.scientific.net/MSF.950.60. open in new tab
  27. Wang, J.; Sun, Q.; Teng, J.; Feng, J. Bubble evolution in ultrasonic wave-assisted underwater wet FCAW. Weld. J. 2019, 98, 150-163, doi:10.29391/2019.98.012. open in new tab
  28. Guo, N.; Du, Y.; Maksimov, S.; Feng, J.; Yin, Z.; Krazhanovskyi, D.; Fu, Y. Study of metal transfer control in underwater wet FCAW using pulsed wire feed method. Weld. World 2018, 62, 87-94, doi:10.1007/s40194-017-0497-y. open in new tab
  29. Yang, Q.; Han, Y.; Jia, C.; Wu, J.; Dong, S.; Wu, C. Impeding effect of bubbles on metal transfer in underwater wet FCAW. J. Manuf. Process. 2019, 45, 682-689, doi:10.1016/j.jmapro.2019.08.013. open in new tab
  30. Chen, H.; Guo, N.; Xu, K.; Xu, C.; Zhou, L.; Wang, G. In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding. Mater.Des. 2020, 108482, doi:10.1016/j.matdes.2020.108482. open in new tab
  31. Yan, C.; Kan, C.; Li, C.; Tian, S.; Bai, Y.; Xue, F. Experimental and numerical investigation on underwater wet welding of HSLA steel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 022016, doi:10.1088/1757-899X/394/2/022016. open in new tab
  32. Tomków, J.; Fydrych, D.; Rogalski, G.; Łabanowski, J. Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Rev. Metal. 2019, 55, e140,doi:10.3989/revmetalm.140. open in new tab
  33. Chen, H.; Gui, N.; Liu, C.; Zhang, X.; Xu, C.; Wang, G. Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method. Int. J. Hyd. Energy 2020, in press, doi:10.1016/j.ijhydene.2020.01.195. open in new tab
  34. Świerczyńska, A.; Fydrych, D.; Landowski, M.; Rogalski, G.; Łabanowski, J. Hydrogen embrittlement of X2CRNiMoCuN25-6-2-super duplex stainless steel welded joints under cathodic protection. Constr. Build. Mater. 2020, 238, 117697, doi:10.1016/j.conbuildmat.2019.117697. open in new tab
  35. Tomków, J.; Fydrych, D.; Rogalski, G.; Łabanowski, J. Temper bead welding of S460N steel in wet welding conditions. Adv. Mater. Sci. 2018, 18, 5-14, doi:10.1515/adms-2017-0036. open in new tab
  36. Gao, W.; Wang, D.; Cheng, F.; Di, X.; Den, C.; Xu, W. Microstructural and mechanical performance of underwater wet welded S355 steel. J. Mater. Process. Technol. 2016, 238, 333-340, doi:10.1016/j.jmatprotec.2016.07.039. open in new tab
  37. ISO 2560-A Classification of Coated Rod Electrodes for Arc Welding of Unalloyed Steel and Fine-Grained Steel. ISO: Geneva, Switzerland, 2010. open in new tab
  38. Tomków, J.; Fydrych, D.; Rogalski, G. Role of bead sequence in underwater welding. Materials 2019, 12, 3372, doi:10.3390/ma12203372. open in new tab
  39. ASTM G 65-00 Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus. West Conshohocken, PA, USA, 2016. open in new tab
  40. Szala, M.; Szafran, M.; Macek, W.; Marchenko, S.; Hejwowski, T. Abrasion resistance S235, C45, AISI 304 and Hardox 500 steels with usage of garnet, corundum and carborundum abrasives. Adv. Sci. Technol. Res. J. 2019, 13, 151-161, doi:10.12913/22998624/113244. open in new tab
  41. EN ISO 9015-1:2011 Destructive Tests on Welds in Metallic Materials. Hardness Testing. Hardness Test on Arc Welded Joint; ISO: Geneva, Switzerland, 2011. open in new tab
  42. EN ISO 17639:2013 Destructive Tests on Welds in Metallic Materials. Macroscopic and Microscopic Examination of Welds; ISO: Geneva, Switzerland, 2013. open in new tab
  43. Chand, N.; Neogi, S. Mechanism of material removal during three-body abrasion of FRF composite. Tribol. Lett. 1998, 4, 81, doi:10.1023/A:1019138718283. open in new tab
  44. Singh, P.T.; Singla, A.K.; Singh, J.; Singh, K.; Gupta, M.K.; Ju, H.; Song, Q.; Liu, Z.; Pruncu, C.I. Abrasive wear behavion of cryogenically treated boron steel (30MnCrB4) used for rotavator blades. Materials 2020, 13, 436, doi:10.3390/ma13020436. open in new tab
  45. Jankauskas, V.; Kreivaitis, R.; Milcius, D.; Baltusnikas, A. Analysis of abrasive wear performance of arc welded hard layers. Wear 2008, 265, 1626-1632, doi:10.1016/j.wear.2008.03.022. open in new tab
  46. Sun, Y.L.; Obasi, G.; Hamelin, C.J.; Vasileiou, A.N.; Flint, T.F.; Balakrishnan, J.; Smith, M.C.; Francis, J.A. Effects of dilution on alloy content and microstructure in multi-pass steel welds. J. Mater. Process. Technol. 2019, 265, 71-86, doi:10.1016/j.jmatprotec.2018.09.037. open in new tab
  47. Saida, K.; Bunda, K.; Ogiwara, H.; Nishimoto, K. Microcracking susceptibility in dissimilar multipass welds of Ni-base alloy 690 and low-alloy steel. Weld. Int. 2015, 29, 668-680, doi:10.1080/09507116.2014.921074. open in new tab
  48. Coronado, J.J.; Caicedo, H.F.; Gómez, A.L. The effects of welding process on abrasive wear resistance for hardfacing deposits. Tribol. Int. 2009, 42, 745-749, doi:10.1016/j.triboint.2008.10.012. open in new tab
  49. EN-ISO 15614-1:2017 Specification and Qualification of Welding Procedures for Metallic Materials-Welding Procedure Test-Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys; ISO: Geneva, Switzerland, 2017. open in new tab
  50. Guo, N.; Liu, D.; Guo, W.; Li, X.; Feng, J. Effect of Ni on microstructure and mechanical properties of underwater wet welding joint. Mater. Des. 2015, 77, 25-31, doi:10.1016/j.matdes.2015.04.007. open in new tab
  51. Cui, Z.; Bhattacharya, S.; Green, D.E.; Alpas, A.T. Mechanisms of die wear and wear-induced damage at the trimmed edge of high strength steel sheets. Wear 2019, 426, 1635-1645, doi:10.1016/j.wear.2019.01.113. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 112 times

Recommended for you

Meta Tags