The accretion of the new ice layer on the surface of hexagonal ice crystal and the influence of the local electric field on this process - Publication - Bridge of Knowledge

Search

The accretion of the new ice layer on the surface of hexagonal ice crystal and the influence of the local electric field on this process

Abstract

The process of creation of a new layer of ice on the basal plane and on the prism plane of a hexagonal ice crystal is analyzed. It is demonstrated that the ordering of water molecules in the already existing crystal affects the freezing. On the basal plane, when the orientations of water molecules in the ice block are random, the arrangement of the new layer in a cubic manner is observed more frequently — approximately 1.7 times more often than in a hexagonal manner. When the water molecules in the ice block are more ordered, it results in the predominance of the oxygen atoms or the hydrogen atoms on the most outer part of the surface of the ice block. In this case, the hexagonal structure is formed more frequently when the supercooling of water exceeds 10 K. This phenomenon is explained by the influence of the oriented electric field, present as a consequence of the ordering of the dipoles of water molecules in the ice block. This field modifies the structure of solvation water (i.e., the layer of water in the immediate vicinity of the ice surface). We showed that the structure of solvation water predetermines the kind of the newly created layer of ice. This effect is temperature-dependent: when the temperature draws nearer to the melting point, the cubic structure becomes the prevailing form. The temperature at which the cubic and the hexagonal structures are formed with the same probabilities is equal to about 260 K. In the case of the prism plane, the new layer that is formed is always the hexagonal one, which is independent of the arrangement of water molecules in the ice block and is in agreement with previous literature data. For the basal plane, as well as for the prism plane, no evident dependence on the ordering of water molecules that constitute the ice block on the rate of crystallization can be observed.

Citations

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Copyright (AIP Publishing)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF CHEMICAL PHYSICS no. 147, edition 17, pages 1 - 9,
ISSN: 0021-9606
Language:
English
Publication year:
2017
Bibliographic description:
Grabowska J., Kuffel A., Zielkiewicz J.: The accretion of the new ice layer on the surface of hexagonal ice crystal and the influence of the local electric field on this process// JOURNAL OF CHEMICAL PHYSICS. -Vol. 147, iss. 17 (2017), s.1-9
DOI:
Digital Object Identifier (open in new tab) 10.1063/1.4994612
Bibliography: test
  1. S. Nie, N. C. Bartelt, and K. Thürmer, Phys. Rev. B 84, 035420 (2011). open in new tab
  2. J. D. Madura, K. Baran, and A. Wierzbicki, J. Mol. Recognit. 13, 101 (2000). open in new tab
  3. J. Grabowska, A. Kuffel, and J. Zielkiewicz, J. Chem. Phys. 145, 075101 (2016). open in new tab
  4. N. H. Fletcher, Philos. Mag. B 66, 109 (1992). open in new tab
  5. V. Buch, H. Groenzin, I. Li, M. J. Shultz, and E. Tosatti, Proc. Natl. Acad. Sci. U. S. A. 105, 5969 (2008). open in new tab
  6. N. Avidor and W. Allison, J. Phys. Chem. Lett. 7, 4520 (2016). open in new tab
  7. E. R. Batista and H. Jónsson, Comput. Mater. Sci. 20, 325 (2001). open in new tab
  8. C. Thierfelder, A. Hermann, P. Schwerdtfeger, and W. G. Schmidt, Phys. Rev. B 74, 045422 (2006). open in new tab
  9. Z. Sun, D. Pan, L. Xu, and E. Wang, Proc. Natl. Acad. Sci. U. S. A. 109, 13177 (2012). open in new tab
  10. C. L. Bishop, D. Pan, L. M. Liu, G. A. Tribello, A. Michaelides, E. G. Wang, and B. Slater, Faraday Discuss. 141, 277 (2009). open in new tab
  11. D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Götz, I. Kolossváry, K. F. open in new tab
  12. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman, AMBER 12 Reference Manual (University of California, San Francisco, 2012).
  13. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984). open in new tab
  14. D. Rozmanov and P. G. Kusalik, J. Chem. Phys. 136, 44507 (2012). open in new tab
  15. J. L. F. Abascal, E. Sanz, R. García Fernández, and C. Vega, J. Chem. Phys. 122, 234511 (2005). open in new tab
  16. M. Seo, E. Jang, K. Kim, S. Choi, and J. S. Kim, J. Chem. Phys. 137, 154503 (2012). open in new tab
  17. A. H. Nguyen and V. Molinero, J. Phys. Chem. B 119, 9369 (2015). open in new tab
  18. E. B. Moore and V. Molinero, J. Chem. Phys. 132, 244504 (2010). open in new tab
  19. A. Hudait, S. Qiu, L. Lupi, and V. Molinero, Phys. Chem. Chem. Phys. 18, 9544 (2016). open in new tab
  20. E. Małolepsza and T. Keyes, J. Chem. Theory Comput. 11, 5613 (2015). open in new tab
  21. Y. P. Handa, D. D. Klug, and E. Whalley, J. Chem. Phys. 84, 7009 (1986). open in new tab
  22. T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering, and T. F. Whale, Phys. Chem. Chem. Phys. 17, 60 (2015). open in new tab
  23. M. A. Carignano, E. Baskaran, P. B. Shepson, and I. Szleifer, Ann. Glaciol. 44, 113 (2006). open in new tab
  24. M. A. Carignano, J. Phys. Chem. C 111, 501 (2007). open in new tab
  25. S. Choi, E. Jang, and J. S. Kim, J. Chem. Phys. 140, 014701 (2014). open in new tab
  26. A. Zaragoza, M. M. Conde, J. R. Espinosa, C. Valeriani, C. Vega, and E. Sanz, J. Chem. Phys. 143, 134504 (2015). open in new tab
  27. T. Takahashi, J. Cryst. Growth 59, 441 (1982). open in new tab
  28. T. Takahashi and T. Kobayashi, J. Cryst. Growth 64, 593 (1983). open in new tab
  29. D. Ehre, E. Lavert, M. Lahav, and I. Lubomirsky, Science 327, 672 (2010). open in new tab
  30. A. Belitzky, E. Mishuk, D. Ehre, M. Lahav, and I. Lubomirsky, J. Phys. Chem. Lett. 7, 43 (2016). open in new tab
  31. K. Carpenter and V. Bahadur, Langmuir 31, 2243 (2015). open in new tab
  32. J. Y. Yan and G. N. Patey, J. Phys. Chem. Lett. 2, 2555 (2011). open in new tab
  33. J. Y. Yan and G. N. Patey, J. Phys. Chem. A 116, 7057 (2012). open in new tab
  34. J. Y. Yan and G. N. Patey, J. Chem. Phys. 139, 144501 (2013). open in new tab
  35. J. Y. Yan, S. D. Overduin, and G. N. Patey, J. Chem. Phys. 141, 074501 (2014). open in new tab
  36. H. Nada and Y. Furukawa, J. Cryst. Growth 283, 242 (2005). open in new tab
  37. M. A. Carignano, P. B. Shepson, and I. Szleifer, Mol. Phys. 103, 2957 (2005). open in new tab
  38. E. Kristiansen and K. E. Zachariassen, Cryobiology 51, 262 (2005). open in new tab
  39. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996). open in new tab
Verified by:
Gdańsk University of Technology

seen 80 times

Recommended for you

Meta Tags