The accretion of the new ice layer on the surface of hexagonal ice crystal and the influence of the local electric field on this process - Publikacja - MOST Wiedzy

Wyszukiwarka

The accretion of the new ice layer on the surface of hexagonal ice crystal and the influence of the local electric field on this process

Abstrakt

The process of creation of a new layer of ice on the basal plane and on the prism plane of a hexagonal ice crystal is analyzed. It is demonstrated that the ordering of water molecules in the already existing crystal affects the freezing. On the basal plane, when the orientations of water molecules in the ice block are random, the arrangement of the new layer in a cubic manner is observed more frequently — approximately 1.7 times more often than in a hexagonal manner. When the water molecules in the ice block are more ordered, it results in the predominance of the oxygen atoms or the hydrogen atoms on the most outer part of the surface of the ice block. In this case, the hexagonal structure is formed more frequently when the supercooling of water exceeds 10 K. This phenomenon is explained by the influence of the oriented electric field, present as a consequence of the ordering of the dipoles of water molecules in the ice block. This field modifies the structure of solvation water (i.e., the layer of water in the immediate vicinity of the ice surface). We showed that the structure of solvation water predetermines the kind of the newly created layer of ice. This effect is temperature-dependent: when the temperature draws nearer to the melting point, the cubic structure becomes the prevailing form. The temperature at which the cubic and the hexagonal structures are formed with the same probabilities is equal to about 260 K. In the case of the prism plane, the new layer that is formed is always the hexagonal one, which is independent of the arrangement of water molecules in the ice block and is in agreement with previous literature data. For the basal plane, as well as for the prism plane, no evident dependence on the ordering of water molecules that constitute the ice block on the rate of crystallization can be observed.

Cytowania

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 50 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (AIP Publishing)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF CHEMICAL PHYSICS nr 147, wydanie 17, strony 1 - 9,
ISSN: 0021-9606
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Grabowska J., Kuffel A., Zielkiewicz J.: The accretion of the new ice layer on the surface of hexagonal ice crystal and the influence of the local electric field on this process// JOURNAL OF CHEMICAL PHYSICS. -Vol. 147, iss. 17 (2017), s.1-9
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1063/1.4994612
Bibliografia: test
  1. S. Nie, N. C. Bartelt, and K. Thürmer, Phys. Rev. B 84, 035420 (2011). otwiera się w nowej karcie
  2. J. D. Madura, K. Baran, and A. Wierzbicki, J. Mol. Recognit. 13, 101 (2000). otwiera się w nowej karcie
  3. J. Grabowska, A. Kuffel, and J. Zielkiewicz, J. Chem. Phys. 145, 075101 (2016). otwiera się w nowej karcie
  4. N. H. Fletcher, Philos. Mag. B 66, 109 (1992). otwiera się w nowej karcie
  5. V. Buch, H. Groenzin, I. Li, M. J. Shultz, and E. Tosatti, Proc. Natl. Acad. Sci. U. S. A. 105, 5969 (2008). otwiera się w nowej karcie
  6. N. Avidor and W. Allison, J. Phys. Chem. Lett. 7, 4520 (2016). otwiera się w nowej karcie
  7. E. R. Batista and H. Jónsson, Comput. Mater. Sci. 20, 325 (2001). otwiera się w nowej karcie
  8. C. Thierfelder, A. Hermann, P. Schwerdtfeger, and W. G. Schmidt, Phys. Rev. B 74, 045422 (2006). otwiera się w nowej karcie
  9. Z. Sun, D. Pan, L. Xu, and E. Wang, Proc. Natl. Acad. Sci. U. S. A. 109, 13177 (2012). otwiera się w nowej karcie
  10. C. L. Bishop, D. Pan, L. M. Liu, G. A. Tribello, A. Michaelides, E. G. Wang, and B. Slater, Faraday Discuss. 141, 277 (2009). otwiera się w nowej karcie
  11. D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Götz, I. Kolossváry, K. F. otwiera się w nowej karcie
  12. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman, AMBER 12 Reference Manual (University of California, San Francisco, 2012).
  13. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984). otwiera się w nowej karcie
  14. D. Rozmanov and P. G. Kusalik, J. Chem. Phys. 136, 44507 (2012). otwiera się w nowej karcie
  15. J. L. F. Abascal, E. Sanz, R. García Fernández, and C. Vega, J. Chem. Phys. 122, 234511 (2005). otwiera się w nowej karcie
  16. M. Seo, E. Jang, K. Kim, S. Choi, and J. S. Kim, J. Chem. Phys. 137, 154503 (2012). otwiera się w nowej karcie
  17. A. H. Nguyen and V. Molinero, J. Phys. Chem. B 119, 9369 (2015). otwiera się w nowej karcie
  18. E. B. Moore and V. Molinero, J. Chem. Phys. 132, 244504 (2010). otwiera się w nowej karcie
  19. A. Hudait, S. Qiu, L. Lupi, and V. Molinero, Phys. Chem. Chem. Phys. 18, 9544 (2016). otwiera się w nowej karcie
  20. E. Małolepsza and T. Keyes, J. Chem. Theory Comput. 11, 5613 (2015). otwiera się w nowej karcie
  21. Y. P. Handa, D. D. Klug, and E. Whalley, J. Chem. Phys. 84, 7009 (1986). otwiera się w nowej karcie
  22. T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering, and T. F. Whale, Phys. Chem. Chem. Phys. 17, 60 (2015). otwiera się w nowej karcie
  23. M. A. Carignano, E. Baskaran, P. B. Shepson, and I. Szleifer, Ann. Glaciol. 44, 113 (2006). otwiera się w nowej karcie
  24. M. A. Carignano, J. Phys. Chem. C 111, 501 (2007). otwiera się w nowej karcie
  25. S. Choi, E. Jang, and J. S. Kim, J. Chem. Phys. 140, 014701 (2014). otwiera się w nowej karcie
  26. A. Zaragoza, M. M. Conde, J. R. Espinosa, C. Valeriani, C. Vega, and E. Sanz, J. Chem. Phys. 143, 134504 (2015). otwiera się w nowej karcie
  27. T. Takahashi, J. Cryst. Growth 59, 441 (1982). otwiera się w nowej karcie
  28. T. Takahashi and T. Kobayashi, J. Cryst. Growth 64, 593 (1983). otwiera się w nowej karcie
  29. D. Ehre, E. Lavert, M. Lahav, and I. Lubomirsky, Science 327, 672 (2010). otwiera się w nowej karcie
  30. A. Belitzky, E. Mishuk, D. Ehre, M. Lahav, and I. Lubomirsky, J. Phys. Chem. Lett. 7, 43 (2016). otwiera się w nowej karcie
  31. K. Carpenter and V. Bahadur, Langmuir 31, 2243 (2015). otwiera się w nowej karcie
  32. J. Y. Yan and G. N. Patey, J. Phys. Chem. Lett. 2, 2555 (2011). otwiera się w nowej karcie
  33. J. Y. Yan and G. N. Patey, J. Phys. Chem. A 116, 7057 (2012). otwiera się w nowej karcie
  34. J. Y. Yan and G. N. Patey, J. Chem. Phys. 139, 144501 (2013). otwiera się w nowej karcie
  35. J. Y. Yan, S. D. Overduin, and G. N. Patey, J. Chem. Phys. 141, 074501 (2014). otwiera się w nowej karcie
  36. H. Nada and Y. Furukawa, J. Cryst. Growth 283, 242 (2005). otwiera się w nowej karcie
  37. M. A. Carignano, P. B. Shepson, and I. Szleifer, Mol. Phys. 103, 2957 (2005). otwiera się w nowej karcie
  38. E. Kristiansen and K. E. Zachariassen, Cryobiology 51, 262 (2005). otwiera się w nowej karcie
  39. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 80 razy

Publikacje, które mogą cię zainteresować

Meta Tagi