The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland - Publication - Bridge of Knowledge

Search

The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland

Abstract

The principal objective of this study was to determine whether the honeys produced in apiaries located in Pomeranian Voivodeship (Northern Poland) contain bacteria producing metabolites with growth inhibition potential against important human and animal pathogens. The pathogens included Staphylococcus aurues, Staphyloccocus epidermidis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Candida albicans. From 12 samples of honey, 163 strains of bacteria were isolated. Activity against reference staphylococci: S. aurues ATCC 25923; S. aureus ATCC 29213; S. epidermidis 12228 was observed in 33 (20.3%), 38 (23.3%), and 41 (25.1%) isolates, respectively. High inhibitory activity was also found against Listeria monocytogenes ATCC 7644 in 34 strains (20.9%). Activity against Candida albicans ATCC 10231 and especially Gram-negative bacteria: Pseudomonas aeruginosa ATCC 27857 and Escherichia coli ATCC 25922 was rarely observed. Production of metabolites exhibiting activity against the three pathogens mentioned above was confirmed for 13 (7.8%), 3 (1.8%), and 2 (1.2%) isolates, respectively. Forty-six isolates were selected for further analysis. Within this group, metabolites synthesized by 18 producing strains (39.13%) inhibited growth of only one of the reference strains of pathogenic microorganisms. However, 14 (30.44%), 8 (17.39%), and 6 (13.04%) strains produced agents active against three, two, and four pathogens, respectively. Sequencing of the 16S rRNA gene revealed that 80.4% of these 46 producing strains belong to the genus Bacillus. However, some producing strains belonging to the genus of Peanibacillus, Lysinibacillus, Microbacterium, and Staphylococcus were also identified. Furthermore, the analysis of the sequences of 16S rRNA, as well as RAPD-PCR, exhibited a significant diversity in the strains tested, even in the case of bacteria isolated from the same honey (and classified to the same genus, usually Bacillus spp.). This observation suggests environmental origin (nectar, water, or pollen) of the producing strains. The research carried out confirmed that honey produced in Northern Poland is a promising source of strains of bacteria producing metabolites with antimicrobial activity.

Citations

  • 3 9

    CrossRef

  • 0

    Web of Science

  • 4 0

    Scopus

Cite as

Full text

download paper
downloaded 30 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
International Journal of Environmental Research and Public Health no. 15, edition 9, pages 1 - 14,
ISSN: 1660-4601
Language:
English
Publication year:
2018
Bibliographic description:
Pajor M., Worobo R., Milewski S., Szweda P.: The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland// International Journal of Environmental Research and Public Health. -Vol. 15, iss. 9 (2018), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.3390/ijerph15092002
Bibliography: test
  1. Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacognosy Res. 2017, 9, 121-127. [PubMed] open in new tab
  2. Molan, P.; Rhodes, T. Honey: A biologic wound dressing. Wounds Compend. Clin. Res. Pract. 2015, 27, 141-151. open in new tab
  3. Brudzynski, K.; Sjaarda, C. Honey glycoproteins containing antimicrobial peptides, jelleins of the major royal jelly protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. PLoS ONE 2015, 10, e0120238. [CrossRef] [PubMed] open in new tab
  4. Grecka, K.; Kuś, P.M.; Worobo, R.W.; Szweda, P. Study of the anti-staphylococcal potential of honeys produced in Northern Poland. Molecules 2018, 23, 260. [CrossRef] [PubMed] open in new tab
  5. Kwakman, P.H.S.; Zaat, S.A.J. Antibacterial components of honey. IUBMB Life 2011, 64, 48-55. [CrossRef] [PubMed] open in new tab
  6. Brudzynski, K.; Miotto, D.; Kim, L.; Sjaarda, C.; Maldonado-Alvarez, L.; Fukś, H. Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Sci. Rep. 2017, 7, 7637. [CrossRef] [PubMed] open in new tab
  7. Brudzynski, K.; Abubaker, K.; Miotto, D. Unraveling a mechanism of honey antibacterial action: Polyphenol/H 2 O 2 -induced oxidative effect on bacterial cell growth and on DNA degradation. Food Chem. 2012, 133, 329-336. [CrossRef] [PubMed] open in new tab
  8. Santana, W.C.; Salgado-Silva, M.; Rabadzhiev, Y.; Eller, M.; Ivanova, I.; Iliev, I. Microorganisms in Honey. In Honey Analysis;
  9. Arnaut De Toledo, V., Ed.; InTech: Rijeka, Croatia, 2017.
  10. Gilliam, M.; Morton, H.L. Bacteria belonging to the genus Bacillus isolated from honey bees, Apis mellifera, fed 2,4-d and antibiotics (1). Apidologie 1978, 9, 213-222. [CrossRef] open in new tab
  11. Ahn, J.-H.; Hong, I.-P.; Bok, J.-I.; Kim, B.-Y.; Song, J.; Weon, H.-Y. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 2012, 50, 735-745. [CrossRef] [PubMed] open in new tab
  12. Wang, M.; Zhao, W.Z.; Xu, H.; Wang, Z.W.; He, S.Y. Bacillus in the guts of honey bees (Apis mellifera; open in new tab
  13. Hymenoptera: Apidae) mediate changes in amylase values. Eur. J. Entomol. 2015, 112, 619-624. [CrossRef] open in new tab
  14. Filannino, P.; di Cagno, R.; Addante, R.; Pontonio, E.; Gobbetti, M. Metabolism of fructophilic lactic acid bacteria isolated from the Apis mellifera L. bee gut: Phenolic acids as external electron acceptors. Appl. Environ. Microbiol. 2016, 82, 6899-6911. [CrossRef] [PubMed] open in new tab
  15. Rangberg, A.; Mathiesen, G.; Amdam, G.V.; Diep, D.B. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera. Benef. Microbes 2015, 6, 513-523. [CrossRef] [PubMed] open in new tab
  16. Kačániová, M.; Pavličová, S.; Haščík, P.; Kociubinski, G.; Kńazovická, V.; Sudzina, M.; Sudzinová, J.; Fikselová, M. Microbial communities in bees, pollen and honey from Slovakia. Acta Microbiol. Immunol. Hung. 2009, 56, 285-295. [CrossRef] [PubMed] open in new tab
  17. Int. J. Environ. Res. Public Health 2018, 15, 2002 13 of 14 open in new tab
  18. Naseer, S.; Khan, S.A.; Kamran, A.M. Identification of cultivable bacteria from natural honey of different botanical origin. J. Biochem. Mol. Biol 2015, 48, 53-56.
  19. Snowdon, J.A.; Cliver, D.O. Microorganisms in honey. Int. J. Food Microbiol. 1996, 31, 1-26. [CrossRef] open in new tab
  20. Kuś, P.M.; Szweda, P.; Jerković, I.; Tuberoso, C.I.G. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett. Appl. Microbiol. 2015, 62, 269-276. [CrossRef] [PubMed] open in new tab
  21. Esawy, M.A.; Ahmed, E.F.; Helmy, W.A.; Mansour, N.M.; El-Senousy, W.M.; El-Safty, M.M. Antiviral Levans from Bacillus spp. Isolated from Honey. In The Complex World of Polysaccharides, 1st ed.; Karunaratne, D.N., Ed.; In Tech: Rijeka, Croatia, 2012; pp. 197-214. ISBN 978-953-51-0819-1. open in new tab
  22. Aween, M.M.; Hassan, Z.; Muhialdin, B.J.; Noor, H.M.; Eljamel, Y.A. Evaluation on antibacterial activity of Lactobacillus acidophilus strains isolated from honey. Am. J. Appl. Sci. 2012, 9, 807-817. [CrossRef] open in new tab
  23. Sultana, T.; Rana, J.; Chakraborty, S.R.; Das, K.K.; Rahman, T.; Noor, R. Microbiological analysis of common preservatives used in food items and demonstration of their in vitro anti-bacterial activity. Asian Pacific J. Trop. Dis. 2014, 4, 452-456. [CrossRef] open in new tab
  24. Mohan, A.; Quek, S.-Y.; Gutierrez-Maddox, N.; Gao, Y.; Shu, Q. Effect of honey in improving the gut microbial balance. Food Qual. Saf. 2017, 1, 107-115. [CrossRef] open in new tab
  25. Yang, S.-C.; Lin, C.-H.; Sung, C.; Fang, J.-Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [PubMed] open in new tab
  26. Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 6S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697-703. [CrossRef] [PubMed] open in new tab
  27. Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, V.; Klaudiny, J.; Majtan, J. Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Sci. Rep. 2017, 7, 7340. [CrossRef] [PubMed] open in new tab
  28. Azonwade, F.E.; Paraïso, A.; Agbangnan Dossa, C.P.; Dougnon, V.T.; N'Tcha, C.; Mousse, W.; Baba-Moussa, L. Physicochemical characteristics and microbiological quality of honey produced in Benin. J. Food Qual. 2018, 2018, 1896057. [CrossRef] open in new tab
  29. Wesołowska, M.; Kačániová, M.; Dżugan, M. The antioxidant properties and microbiological quality of polish honeys. J. Microbiol. Biotechnol. Food Sci. 2014, 3, 422-425. open in new tab
  30. Fernández, L.A.; Ghilardi, C.; Hoffmann, B.; Gallez, L. Microbiological analysis of honey obtained from various processing points in honey houses of the Pampas Region, Argentina. Rev. Argent. Microbiol. 2015, 49, 55-61. open in new tab
  31. Różańska, H. Microbiological Quality of Polish Honey. Bull. Vet. Inst. Pulawy 2011, 55, 443-445. open in new tab
  32. Lee, H.; Churey, J.J.; Worobo, R.W. Antimicrobial activity of bacterial isolates from different floral sources of honey. Int. J. Food Microbiol. 2008, 126, 240-244. [CrossRef] [PubMed] open in new tab
  33. Lee, S.K.; Lee, H. Antimicrobial activity of solvent fractions and bacterial isolates of Korean domestic honey from different floral sources. Food Sci. Biotechnol. 2016, 25, 1507-1512. [CrossRef] open in new tab
  34. Abdel Wahab, W.A.; Saleh, S.A.A.; Karam, E.A.; Mansour, N.M.; Esawy, M.A. Possible correlation among osmophilic bacteria, levan yield, and the probiotic activity of three bacterial honey isolates. Biocatal. Agric. Biotechnol. 2018, 14, 386-394. [CrossRef] open in new tab
  35. Ibarguren, C.; Raya, R.R.; Apella, M.C.; Audisio, M.C. Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains. J. Microbiol. 2010, 48, 44-52. [CrossRef] [PubMed] open in new tab
  36. López, A.C.; Alippi, A.M. Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. Int. J. Food Microbiol. 2007, 117, 175-184. [CrossRef] [PubMed] open in new tab
  37. Sinacori, M.; Francesca, N.; Alfonzo, A.; Cruciata, M.; Sannino, C.; Settanni, L.; Moschetti, G. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 2014, 38, 284-294. [CrossRef] [PubMed] open in new tab
  38. Iurlina, M.O.; Fritz, R. Characterization of microorganisms in Argentinean honeys from different sources. Int. J. Food Microbiol. 2005, 105, 297-304. [CrossRef] [PubMed] open in new tab
  39. Wen, Y.; Wang, L.; Jin, Y.; Zhang, J.; Su, L.; Zhang, X.; Zhou, J.; Li, Y. The microbial community dynamics during the vitex honey ripening process in the honeycomb. Front. Microbiol. 2017, 8, 1649. [CrossRef] [PubMed] open in new tab
  40. Salazar-Marroquín, E.L.; Galán-Wong, L.J.; Moreno-Medina, V.R.; Reyes-López, M.Á.; Pereyra-Alférez, B. Bacteriocins synthesized by Bacillus thuringiensis: Generalities and potential applications. Rev. Med. Microbiol. 2016, 27, 95-101. [CrossRef] [PubMed] open in new tab
  41. Vázquez-Quiñones, C.R.; Moreno-Terrazas, R.; Natividad-Bonifacio, I.; Quiñones-Ramírez, E.I.; Vázquez-Salinas, C. Microbiological assessment of honey in México. Rev. Argent. Microbiol. 2018, 50, 75-80. [CrossRef] [PubMed] open in new tab
  42. Shu, L.-J.; Yang, Y.-L. Bacillus classification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry-Effects of culture conditions. Sci. Rep. 2017, 7, 15546. [CrossRef] [PubMed] open in new tab
  43. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 176 times

Recommended for you

Meta Tags