The high-cyclic model for sand tested beyond the usual ranges of application - Publication - Bridge of Knowledge

Search

The high-cyclic model for sand tested beyond the usual ranges of application

Abstract

Citations

Authors (4)

Cite as

Full text

download paper
downloaded 9 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
Acta Geotechnica
ISSN: 1861-1125
Publication year:
2023
DOI:
Digital Object Identifier (open in new tab) https://doi.org/10.1007/s11440-023-02031-y
Bibliography: test
  1. L. AnhDan and J. Koseki. Effects of large number of cyclic loading on deformation characteristics of dense granular materials. Soils and Foundations, 44(3):115-123, 2004. open in new tab
  2. L. AnhDan, J. Koseki, and T. Sato. Comparison of Young's moduli of dense sand and gravel measured by dynamic and static methods. Geotechnical Testing Journal, ASTM, 25(4):349-358, 2002.
  3. M.H. Baziar and H. Sharafi. Assessment of silty sand liquefaction potential using hollow torsional tests -An energy approach. Soil Dynamics and Earthquake Engineering, 31:857-865, 2011. open in new tab
  4. C.S. Chang and R.V. Whitman. Drained permanent deformation of sand due to cyclic loading. Journal of Geotechnical Engineering, ASCE, 114(10):1164-1180, 1988. open in new tab
  5. R. Galindo, M. Illueca, and R. Jimenez. Permanent deformation estimates of dynamic equipment foundations: Application to a gas turbine in granular soils. Soil Dynamics and Earthquake Engineering, 63(1):8-18, 2014. open in new tab
  6. V.N. Georgiannou and A. Tsomokos. Comparison of two fine sands under torsional loading. Canadian Geotechnical Journal, 45:1659-1672, 2008. open in new tab
  7. S. Goto, F. Tatsuoka, S. Shibuya, Y.-S. Kim, and T. Sato. A simple gauge for local small strain measurements in the laboratory. Soils and Foundations, 31(1):169-180, 1991. open in new tab
  8. E. Hoque, T. Sato, and F. Tatsuoka. Performance evaluation of LDTs for use in triaxial tests. Geotechnical Testing Journal, 20(2):149-167, 1997.
  9. E. Hoque and F. Tatsuoka. Anisotropy in elastic deformation of granular materials. Soils and Foundations, 38(1):163-179, 1998. open in new tab
  10. E. Hoque and F. Tatsuoka. Effects of stress ratio on small- strain stiffness during triaxial shearing. Géotechnique, 54(7):429-439, 2004. open in new tab
  11. H.P. Jostad, B.M. Dahl, A. Page, N. Sivasithamparam, and H. Sturm. Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand. Géotechnique, 70(8):682-699, 2020. open in new tab
  12. W.S. Kaggwa, J.R. Booker, and J.P. Carter. Residual strains in calcareous sand due to irregular cyclic loading. Journal of Geotechnical Engineering, ASCE, 117(2):201- 218, 1991. open in new tab
  13. L. Knittel. Granular soils under multidimensional cyclic loading. Dissertation, Institute for Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology (KIT), No. 188, 2020.
  14. L. Knittel, T. Wichtmann, A. Niemunis, G. Huber, E. Espino, and T. Triantafyllidis. Pure elastic stiffness of sand represented by response envelopes derived from cyclic triaxial tests with local strain measurements. Acta Geotechnica, 15:2075-2088, 2020. open in new tab
  15. S. Lenart, J. Koseki, Y. Miyashita, and T. Sato. Large- scale triaxial tests of dense gravel material at low confining pressures. Soils and Foundations, 54(1):45-55, 2014. open in new tab
  16. S. López-Querol and R. Bázquez. Validation of a new endochronic liquefaction model for granular soil by using centrifuge test data. Soil Dynamics and Earthquake Engineering, 27(2):920-937, 2007. open in new tab
  17. M.P. Luong. Mechanical aspects and thermal effects of cohesionless soils under cyclic and transient loading. In Proc. IUTAM Conf. on Deformation and Failure of Granular materials, Delft, pages 239-246, 1982.
  18. J. Machaček, T. Wichtmann, H. Zachert, and Th. Triantafyllidis. Long-term settlements of a ship lock: measurements vs. FE-prediction using a high cycle accumulation model. Computers and Geotechnics, 97(5):222-232, 2018. open in new tab
  19. H. Matsuoka and T. Nakai. A new failure criterion for soils in three-dimensional stresses. In Deformation and Failure of Granular Materials, pages 253-263, 1982. Proc. IUTAM Symp. in Delft.
  20. M. Miner. Cumulative damage in fatigue. Transactions of the American Society of Mechanical Engineering, 67:A159- A164, 1945. open in new tab
  21. P.C. Munoz Rodriguez. Investigations on the strain accumulation of sand under cyclic loading with high pressures and large stress amplitudes, Bachelorarbeit. Institut für Bodenmechanik und Felsmechanik, Karlsruher Institut für Technologie (KIT), 9 2019.
  22. P.G. Nicholson, R.B. Seed, and H.A. Anwar. Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation. Canadian Geotechnical Journal, 30(5):727-738, 1993. open in new tab
  23. A. Niemunis. Extended hypoplastic models for soils. Habilitation, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 34, 2003.
  24. A. Niemunis and L. Knittel. Removal of the membrane penetration error from triaxial data. Open Geomechanics, 2(5), 2020. open in new tab
  25. A. Niemunis, T. Wichtmann, and Th. Triantafyllidis. A high-cycle accumulation model for sand. Computers and Geotechnics, 32(4):245-263, 2005. open in new tab
  26. A.M. Page, R.T. Klinkvort, S. Bayton, Y. Zhang, and H.P. Jostad. A procedure for predicting the permanent rotation of monopiles in sand supporting offshore wind turbines. Marine Structures. open in new tab
  27. C. Pasten, H. Shin, and J.C. Santamarina. Long-term foundation response to repetitive loading. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 140(4), 2014. open in new tab
  28. H. Shahnazari and I. Towhata. Torsion shear tests on cyclic stress-dilatancy relationship of sand. Soils and Foundations, 42(1):105-119, 2002. open in new tab
  29. P. Staubach and T. Wichtmann. Long-term deformations of monopile foundations for offshore wind turbines studied with a high-cycle accumulation model. Computers and Geotechnics, 124, 2020. open in new tab
  30. H.E. Stewart. Permanent strains from cyclic variable- amplitude loadings. Journal of Geotechnical Engineering, ASCE, 112(6):646-660, 1986. open in new tab
  31. F. Tatsuoka, K. Ochi, S. Fujii, and M. Okamoto. Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soils and Foundations, 26(3):23-41, 1986. open in new tab
  32. K. Tokimatsu. System compliance correction from pore pressure response in undrained triaxial tests. Soils and Foundations, 30(2):14-22, 1990. open in new tab
  33. A. Wappler. Verformungsakkumulation in dichtest gelagertem Sand unter zyklischer Beanspruchung, Bachelorarbeit. Institut für Bodenmechanik und Felsmechanik, Karlsruher Institut für Technologie (KIT), 1 2019.
  34. A. Wappler, L. Knittel, A. Niemunis, and H.H. Stutz. On the erasing of the cyclic history by monotonic deformations. In 41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE), Hamburg, 2022. open in new tab
  35. T. Wichtmann. Explicit accumulation model for non- cohesive soils under cyclic loading. PhD thesis, Publications of the Institute of Soil Mechanics and Foundation Engineering, Ruhr-University Bochum, Issue No. 38, 2005.
  36. T. Wichtmann. Soil behaviour under cyclic loading - experimental observations, constitutive description and applications. Habilitation thesis, Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 181, 2016. open in new tab
  37. T. Wichtmann and L. Knittel. Behaviour of granular soils under uni-and multidimensional drained high-cyclic loading. In Th. Triantafyllidis, editor, Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice, pages 136-165. Springer, 2019. open in new tab
  38. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Experimental evidence of a unique flow rule of non-cohesive soils under high-cyclic loading. Acta Geotechnica, 1(1):59- 73, 2006. open in new tab
  39. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. On the influence of the polarization and the shape of the strain loop on strain accumulation in sand under high- cyclic loading. Soil Dynamics and Earthquake Engineering, 27(1):14-28, 2007. open in new tab
  40. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. Soils and Foundations, 49(5):711-728, 2009. open in new tab
  41. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. On the "elastic" stiffness in a high-cycle accumulation model for sand: a comparison of drained and undrained cyclic triaxial tests. Canadian Geotechnical Journal, 47(7):791- 805, 2010. open in new tab
  42. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Strain accumulation in sand due to drained cyclic loading: on the effect of monotonic and cyclic preloading (Miner's rule). open in new tab
  43. Soil Dynamics and Earthquake Engineering, 30(8):736-745, 2010. open in new tab
  44. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. On the "elastic stiffness" in a high-cycle accumulation model - continued investigations. Canadian Geotechnical Journal, 50(12):1260-1272, 2013. open in new tab
  45. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Flow rule in a high-cycle accumulation model backed by cyclic test data of 22 sands. Acta Geotechnica, 9(4):695-709, 2014. open in new tab
  46. T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Improved simplified calibration procedure for a high-cycle accumulation model. Soil Dynamics and Earthquake Engineering, 70(3):118-132, 2015. open in new tab
  47. T. Wichtmann, H.A. Rondón, A. Niemunis, Th. Triantafyllidis, and A. Lizcano. Prediction of permanent deformations in pavements using a high-cycle accumulation model. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 136(5):728-740, 2010. open in new tab
  48. T. Wichtmann and Th. Triantafyllidis. Strain accumulation due to packages of cycles with varying amplitude and/or average stress -on the bundling of cycles and the loss of the cyclic preloading memory. Soil Dynamics and Earthquake Engineering, 101:250-263, 2017. open in new tab
  49. S. Yamashita and S. Toki. Effects of fabric anisotropy of sand on cyclic undrained triaxial and torsional strengths. Soils and Foundations, 33(3):92-104, 1993. open in new tab
  50. M. Yoshimine, K. Ishihara, and W. Vargas. Effects of principle stress direction and intermediate principle stress on undrained shear behavior of sand. Soils and Foundations, 38(3):179-188, 1998. open in new tab
Verified by:
No verification

seen 13 times

Recommended for you

Meta Tags