The influence of microjet array area ratio on heat transfer in the compact heat exchanger - Publication - Bridge of Knowledge

Search

The influence of microjet array area ratio on heat transfer in the compact heat exchanger

Abstract

The paper describes the comprehensive study on the effect of microjet array geometrical parameters on the heat transfer enhancement in the modular heat exchanger. The conducted experimental study provides an experimental database on single phase submerged microjet heat transfer. The Wilson plot method was applied to determine the heat transfer coefficients in the laminar and transition flow regimes of a liquid-to-liquid heat exchanger. The heat exchanger was capable of exchanging 296 W of thermal energy at LMTD of 44 K. The obtained heat transfer coefficient reaches over 24,000 W/m2 K. Average Nusselt number predictions of the Wen and Jang (2003) correlation were in best agreement with the experimentally determined average Nusselt numbers. In the whole tested flow range, Nusselt numbers were not well correlated by any of the correlations from the literature. The experimentally determined Nusselt numbers were significantly lower than expected, due to limited applicability of given literature correlations. The author also proposed own experimental correlation for jet impingement heat transfer coefficient, predicting the experimental results within 30%.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 60 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
EXPERIMENTAL THERMAL AND FLUID SCIENCE no. 99, pages 336 - 343,
ISSN: 0894-1777
Language:
English
Publication year:
2018
Bibliographic description:
Muszyński T.: The influence of microjet array area ratio on heat transfer in the compact heat exchanger// EXPERIMENTAL THERMAL AND FLUID SCIENCE. -Vol. 99, (2018), s.336-343
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.expthermflusci.2018.08.010
Bibliography: test
  1. Y. Zhao, Y. Liang, Y. Sun, J. Chen, Development of a mini-channel evaporator model using R1234yf as working fluid, Int. J. Refrig. 35 (2012) 2166-2178, https:// doi.org/10.1016/j.ijrefrig.2012.08.026. open in new tab
  2. T. Muszynski, Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems, Appl. Therm. Eng. 115 (2017) 782-792, https://doi.org/10.1016/j.applthermaleng.2017.01.021. open in new tab
  3. K. Guo, N. Zhang, R. Smith, Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers, Appl. Therm. Eng. 78 (2015) 491-499, https://doi.org/10.1016/j.applthermaleng.2014.11.071. open in new tab
  4. T.L. Oliveira, P.S. Assis, E.M. Leal, J.R. Ilídio, Study of biomass applied to a co- generation system: A steelmaking industry case, Appl. Therm. Eng. 80 (2015) 269-278, https://doi.org/10.1016/j.applthermaleng.2015.01.002. open in new tab
  5. J. Ebner, C. Babbitt, M. Winer, B. Hilton, A. Williamson, Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co- products, Appl. Energy. 130 (2014) 86-93, https://doi.org/10.1016/j.apenergy. 2014.04.099. open in new tab
  6. P. Olszewski, Heat recovery investigation from dryer-thermal oxidizer system in corn-ethanol plants, Appl. Therm. Eng. 81 (2015) 210-222, https://doi.org/10. 1016/j.applthermaleng.2015.02.033. open in new tab
  7. P. Ostrowski, M. Pronobis, L. Remiorz, Mine emissions reduction installations, Appl. Therm. Eng. 84 (2015) 390-398, https://doi.org/10.1016/j.applthermaleng.2015. 03.061. open in new tab
  8. R. Andrzejczyk, T. Muszynski, C.A. Dorao, Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5 mm diameter channel, Exp. open in new tab
  9. Therm. Fluid Sci. 83 (2017) 78-87, https://doi.org/10.1016/j.expthermflusci. 2016.12.016. open in new tab
  10. B. Peris, J. Navarro-Esbrí, F. Molés, R. Collado, A. Mota-Babiloni, Performance evaluation of an Organic Rankine Cycle (ORC) for power applications from low grade heat sources, Appl. Therm. Eng. 75 (2015) 763-769, https://doi.org/10. 1016/j.applthermaleng.2014.10.034. open in new tab
  11. W. Stanek, W. Gazda, W. Kostowski, Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy, Energy. 92 (2015) 279-289, https://doi.org/10.1016/j.energy.2015.02.005. open in new tab
  12. G. Oluleye, M. Jobson, R. Smith, S.J. Perry, Evaluating the potential of process sites for waste heat recovery, Appl. Energy. 161 (2016) 627-646, https://doi.org/10. 1016/j.apenergy.2015.07.011. open in new tab
  13. J. Sun, W. Li, Operation optimization of an organic rankine cycle (ORC) heat re- covery power plant, Appl. Therm. Eng. 31 (2011) 2032-2041, https://doi.org/10. 1016/j.applthermaleng.2011.03.012. open in new tab
  14. N. Tran, Y. Chang, J. Teng, R. Greif, Enhancement heat transfer rate per unit vo- lume of microchannel heat exchanger by using a novel multi-nozzle structure on cool side, Int. J. Heat Mass Transf. 109 (2017) 1031-1043, https://doi.org/10. 1016/j.ijheatmasstransfer.2017.02.058. open in new tab
  15. X. Wang, Y. Dai, Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study, Appl. Energy. 170 (2016) 193-207, https://doi.org/10.1016/j. apenergy.2016.02.112. open in new tab
  16. M. Sheikholeslami, M.K. Sadoughi, Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface, Int. J. Heat Mass Transf. 116 (2018) 909-919, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.09.086. open in new tab
  17. R. Andrzejczyk, T. Muszynski, Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness, Arch. Thermodyn. 37 (2016) 137-159, https://doi.org/10.1515/aoter-2016-0032. open in new tab
  18. T. Muszynski, S.M. Koziel, Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator, Arch. Thermodyn. 37 (2016) 45-62, https://doi.org/10.1515/aoter-2016-0019. open in new tab
  19. J.M. Wu, H. Zhang, C.H. Yan, Y. Wang, Experimental study on the performance of a novel fin-tube air heat exchanger with punched longitudinal vortex generator, Energy Convers. Manag. 57 (2012) 42-48, https://doi.org/10.1016/J.ENCONMAN. 2011.12.009. open in new tab
  20. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Review of heat transfer en- hancement methods: focus on passive methods using swirl flow devices, Renew. Sustain. Energy Rev. 49 (2015) 444-469. open in new tab
  21. J.M. Wu, W.Q. Tao, Investigation on laminar convection heat transfer in fin-and- tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle, Appl. Therm. Eng. 27 (2007) 2609-2617, https://doi.org/10.1016/J.APPLTHERMALENG.2007.01.025. open in new tab
  22. H. Martin, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Adv. Heat Transf. 13 (1977) 1-60, https://doi.org/10.1016/S0065-2717(08) 70221-1. open in new tab
  23. C.Y. Li, S.V. Garimella, Prandtl-number effects and generalized correlations for confined and submerged jet impingement, Int. J. Heat Mass Transf. 44 (2001) 3471-3480, https://doi.org/10.1016/S0017-9310(01)00003-5. open in new tab
  24. C. Meola, A New Correlation of Nusselt Number for Impinging Jets, Heat Transf. Eng. 30 (2009) 221-228, https://doi.org/10.1080/01457630802304311. open in new tab
  25. R. Vinze, S. Chandel, M.D. Limaye, S.V. Prabhu, Local heat transfer distribution between smooth flat surface and impinging incompressible air jet from a chevron nozzle, Exp. Therm. Fluid Sci. 78 (2016) 124-136, https://doi.org/10.1016/j. expthermflusci.2016.05.017. open in new tab
  26. K. Marzec, A. Kucaba-Piętal, Numerical investigation of local heat transfer dis- tribution on surfaces with a non-uniform temperature under an array of impinging jets with various nozzle shapes, J. Theor. Appl. Mech. 55 (2017) 1313-1324, https://doi.org/10.15632/jtam-pl.55.4.1313. open in new tab
  27. T. Muszynski, R. Andrzejczyk, Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers, Appl. Therm. Eng. 100 (2016) 105-113, https://doi.org/10.1016/j.applthermaleng.2016.01.120. open in new tab
  28. T. Muszynski, D. Mikielewicz, Structural optimization of microjet array cooling system, Appl. Therm. Eng. 123 (2017) 103-110, https://doi.org/10.1016/j. applthermaleng.2017.05.082. open in new tab
  29. M. Zukowski, Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater, Appl. Energy. 142 (2015) 10-20, https://doi.org/ 10.1016/j.apenergy.2014.12.052. open in new tab
  30. T. Rajaseenivasan, S. Ravi Prasanth, M. Salamon Antony, K. Srithar, Experimental investigation on the performance of an impinging jet solar air heater, Alexandria Eng. J. 56 (2017) 63-69, https://doi.org/10.1016/j.aej.2016.09.004. open in new tab
  31. N. Karwa, C. Stanley, H. Intwala, G. Rosengarten, Development of a low thermal resistance water jet cooled heat sink for thermoelectric refrigerators, Appl. Therm. Eng. (2016), https://doi.org/10.1016/j.applthermaleng.2016.06.118. open in new tab
  32. T. Muszynski, R. Andrzejczyk, Heat transfer characteristics of hybrid microjet - Microchannel cooling module, Appl. Therm. Eng. 93 (2016) 1360-1366, https:// doi.org/10.1016/j.applthermaleng.2015.08.085. open in new tab
  33. B.N. Taylor, C.E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Tech. Note. 1297 (1994) 20, https://doi.org/ 10.6028/NIST.TN.1900. open in new tab
  34. J.W. Rose, Heat-transfer coefficients, Wilson plots and accuracy of thermal mea- surements, Exp. Therm. Fluid Sci. 28 (2004) 77-86, https://doi.org/10.1016/ S0894-1777(03)00025-6. open in new tab
  35. P. Fernando, B. Palm, T. Ameel, P. Lundqvist, E. Granryd, A minichannel aluminium tube heat exchanger -Part I: Evaluation of single-phase heat transfer coefficients by the Wilson plot method, Int. J. Refrig. 31 (2008) 669-680, https://doi.org/10. 1016/j.ijrefrig.2008.02.011. open in new tab
  36. X. Lu, X. Du, M. Zeng, S. Zhang, Q. Wang, Shell-side thermal-hydraulic perfor- mances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions, Appl. Therm. Eng. 70 (2014) 1216-1227, https://doi.org/10. 1016/j.applthermaleng.2014.02.053. open in new tab
  37. N. Jamshidi, M. Farhadi, D.D. Ganji, K. Sedighi, Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers, Appl. Therm. Eng. 51 (2013) 644-652, https://doi.org/10.1016/j.applthermaleng.2012.10.008. open in new tab
  38. G.J. Michna, E.A. Browne, Y. Peles, M.K. Jensen, The effect of area ratio on microjet array heat transfer, Int. J. Heat Mass Transf. 54 (2011) 1782-1790, https://doi.org/ 10.1016/j.ijheatmasstransfer.2010.12.038. open in new tab
  39. D.J. Womac, S. Ramadhyani, F.P. Incropera, Correlating equations for Impingement Cooling of Small heat Sources With Single Circular, Liquid Jets (1993). open in new tab
  40. E.N. Sieder, G.E. Tate, Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem. 28 (1936) 1429-1435, https://doi.org/10.1021/ie50324a027. open in new tab
  41. M.-Y. Wen, K.-J. Jang, An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips, Int. J. Heat Mass Transf. 46 (2003) 4657-4667, https://doi.org/10.1016/S0017-9310(03)00302-8. open in new tab
  42. D. Lytle, B. Webb, Air jet impingement heat transfer at low nozzle-plate spacings, Int. J. Heat Mass Transf. 37 (1994) 1687-1697, https://doi.org/10.1016/0017- 9310(94)90059-0. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 117 times

Recommended for you

Meta Tags