The Quaternization Reaction of 5-O-Sulfonates of Methyl 2,3-o-Isopropylidene-β-D-Ribofuranoside with Selected Heterocyclic and Aliphatic Amines - Publication - Bridge of Knowledge

Search

The Quaternization Reaction of 5-O-Sulfonates of Methyl 2,3-o-Isopropylidene-β-D-Ribofuranoside with Selected Heterocyclic and Aliphatic Amines

Abstract

The synthesis of N-((methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside)-5-yl) ammonium salts are presented. To determine the effect of the nucleophile type and outgoing group on the quaternization reaction, selected aliphatic and heterocyclic aromatic amines reacted with: methyl 2,3-O-isopropylidene-5-O-tosyl-β-D-ribofuranoside or methyl 2,3-O-isopropylidene-5-O-mesyl-β-D -ribofuranoside or methyl 2,3-O-isopropylidene-5-O-triflyl-β-D-ribofuranoside were performed on a microscale. High-resolution 1H- and13C-NMR spectral data for all new compounds were recorded. Additionally, the single-crystal X-ray diffraction analysis for methyl 2,3-O-isopropylidene-5-O-mesyl-β-D-ribofuranoside and selected in silico interaction models are reported

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Authors (5)

Cite as

Full text

download paper
downloaded 34 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MOLECULES no. 25, pages 2161 - 2173,
ISSN: 1420-3049
Language:
English
Publication year:
2020
Bibliographic description:
Dmochowska B., Ślusarz R., Chojnacki J., Samaszko-Fiertek J., Madaj J.: The Quaternization Reaction of 5-O-Sulfonates of Methyl 2,3-o-Isopropylidene-β-D-Ribofuranoside with Selected Heterocyclic and Aliphatic Amines// MOLECULES -Vol. 25,iss. 9 (2020), s.2161-2173
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules25092161
Bibliography: test
  1. Strecker, A. Ueber eine neue Bildungsweise und die Constitution der Sulfosäuren. Ann. Chem. Pharm. 1868, 148, 90-96.
  2. Tipson, R.S. Sulfonic Esters of Carbohydrates. Advan. Carbohydr. Chem. 1953, 8, 107-215. open in new tab
  3. Rigby, G.W. (to E. I. duPont deNemours & Co.), U.S. Pat. 2,123,806 (July 12, 1938) Acetone soluble cellulose aryl sulfonates and their preparation; Chem. Abstr. 1938, 32, 7263. open in new tab
  4. Jeanloz, R.W.; Jeanloz, D.A. Partial Esterification of Methyl 4,6-O-Benzylidene-α-D-glucopyranoside in Pyridine Solution. J. Am. Chem. Soc. 1957, 79, 2579-2583. open in new tab
  5. Feit, P.W.; Nielsen, O.T. Glycerol 1,3-and 1,2,4-butanetriol 1,4-bismethanesulfonates. J. Med. Chem. 1966, 9, 416-417. open in new tab
  6. Ball, D.H.; Parrish, F.W. Sulfonic esters of carbohydrates: Part I. In Advances in Carbohydrate Chemistry. Elsevier: Amsterdam, The Netherlands; 1968; open in new tab
  7. Hochberg, M.; Chevalier, X.; Henrotin, Y.; Hunter, D.J.; Uebelhart, D. Symptom and structure modification in osteoarthritis with pharmaceutical-grade chondroitin sulfate: What's the evidence? Curr. Med. Res. Opin. 2013, 29, 259-267. open in new tab
  8. McLean, J. The Discovery of Heparin. Circulation 1959, 19, 75-78. open in new tab
  9. Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J.; Jacquinet, J.C.; Sinay, P.; Torri, G. Synthesis of heparin fragments: A methyl alpha-pentaoside with high affinity for antithrombin III. Carbohydr. Res. 1987, 167, 67-75. open in new tab
  10. Petitou, M.; van Boeckel, C.A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. 2004, 43, 3118-33. open in new tab
  11. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813- 816. open in new tab
  12. Spiers, A.S.D.; Malone, H.F. The significance of serum hexosamine levels in patients with cancer. Br. J. Cancer 1966, 20, 485-495. open in new tab
  13. DeBerardinis, R.J.; Sayed, N.; Ditsworth, D.; Thompson, C.B. Brick by brick: Metabolism and tumor cell growth. Curr. Opin. Gen. Dev. 2008, 18, 54-61. open in new tab
  14. Wike-Hooley, J.L.; Haveman, J.; Rheinhold, H.S. The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol. 1984, 2, 343-366. open in new tab
  15. Ward, K.A.; Jain, R.K. Response of tumors to hyperglycemia: Characterization, significance and role in hyperthermia. Int. J. Hyperth. 1988, 4, 223-250. open in new tab
  16. Tannock, I.F.; Rotin, D. Acid pH in Tumors and Its Potential for Therapeutic Exploitation. Cancer Res. 1989, 49, 4373-4384.
  17. Sacoman, J.L.; Badish, L.N.; Sharkey, T.D.; Hollingsworth, R.I. The metabolic and biochemical impact of glucose 6-sulfonate (sulfoquinovose), a dietary sugar, on carbohydrate metabolism. Carbohydr. Res. 2012, 362, 21-29. open in new tab
  18. Viola, R.E. Kinetic studies of the reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides: pH variation of kinetic parameters. Arch. Biochem. Biophys. 1984, 228, 415-424. open in new tab
  19. Wong, C.H.; Gordon, J.; Cooney, C.L.; Whitesides, G.M. Regeneration of NAD(P)H Using Glucose-6- Sulfate and Glucose-6-Phosphate Dehydrogenase. J. Org. Chem. 1981, 46, 4676-4679. open in new tab
  20. Ray, W.J., Jr.; Long, J.W.; Owens, J.D. An analysis of the substrate-induced rate effect in the phosphoglucomutase system. Biochemistry 1976, 15, 4006-4017. open in new tab
  21. Rose, I.A.; Warms, J.V.B.; Kosow, D.P. Specificity for the glucose-6-P inhibition site of hexokinase. Arch. Biochem. Biophys. 1974, 164, 729-735. open in new tab
  22. Musicki, B.; Widlanski, T.S. Synthesis of Carbohydrate Sulfonates and Sulfonate Esters. J. Org. Chem. 1990, 55, 4231-33. open in new tab
  23. Kleszczyńska, H.; Sarapuk, J.; Różycka-Roszak, B. The Role of Counterions in the Interaction of Some Cationic Surfactants with Model Membranes. Pol. J. Environ. Stud. 1998, 7, 327-329.
  24. Telesiński, A.; Pawłowska, B.; Pater, J.; Biczak, R.; Śnioszek, M. The role of anion in the impact of tetraethylammonium salts on soil phosphatase activities. Ecol. Quest. 2017, 28, 47-54. open in new tab
  25. Nowacki, A.; Dmochowska, B.; Jączkowska, E.; Sikora, K.; Wiśniewski, A. Theoretical studies of the formation of quaternary ammonium mesylates. Comput. Theor. Chem. 2011, 973, 53-61. open in new tab
  26. Nowacki, A.; Sikora, K.; Dmochowska, B.; Wiśniewski, A. Studies of the formation of N-substituted pyridinium mesylates: A theoretical approach. Comput. Theor. Chem. 2012, 1000, 33-41. open in new tab
  27. Sarabia-Garcia, F.; Lopez-Herrera, F.J. Studies on the synthesis of tunicamycin. The preparation of 7- deoxy-2-deamino-6-hydroxy tunicamine and related products. Tetrahedron 1996, 53, 4757-4768. open in new tab
  28. Dmochowska, B.; Sikora, K.; Chojnacki, J.; Wojnowski, W.; Wiśniewski, A. N,N,N-Trimethyl-N-(methyl-5- deoxy-2,3-O-isopropylidene-β-D-ribofuranosid-5-yl)ammo-nium 4-methylbenzenesulfonate sesquihydrate Acta Cryst. 2013, E69, o1019-o1020. open in new tab
  29. Skorupa, E.; Dmochowska, B.; Pellowska-Januszek, L.; Wojnowski, W.; Chojnacki, J.; Wiśniewski, A. Synthesis and structure of selected quaternary N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol- 5-yl)ammonium salts. Carbohydr. Res. 2004, 339, 2355-2362. open in new tab
  30. Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model 2007, 13, 1173-1213. open in new tab
  31. Stewart, J.J.P. MOPAC2016 [Internet].
  32. Stewart Computational Chemistry. Available online from: http://openmopac.net (accessed on 1 September 2016).
Verified by:
Gdańsk University of Technology

seen 72 times

Recommended for you

Meta Tags