Thermal energy storage using stearic acid as PCM material - Publication - Bridge of Knowledge

Search

Thermal energy storage using stearic acid as PCM material

Abstract

This work presents an experimental study of thermal energy storage by use of PCM. The aim of the study was to establish the influence of different inlet temperature of heat transfer fluid (HTF) and different Reynolds number of HTF on intensity of charging process. The PCM used in this study was stearic acid and water was used as HTF. A copper helical coil mounted in cylindrical container served as a heat transfer surface.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 132 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Journal of Mechanical and Energy Engineering no. 2(42), pages 217 - 223,
ISSN: 2544-0780
Language:
English
Publication year:
2018
Bibliographic description:
Cieśliński J., Fabrykiewicz M.: Thermal energy storage using stearic acid as PCM material// Journal of Mechanical and Energy Engineering. -Vol. 2(42)., nr. 3 (2018), s.217-223
DOI:
Digital Object Identifier (open in new tab) 10.30464/jmee.2018.2.3.217
Bibliography: test
  1. Domański R. (1990), Storage of thermal energy Państwowe Wydawnictwo Naukowe, Warszawa Polish)
  2. Letcher T. M. (2016), Storing Energy with Special Reference to Renewable Energy Sources, Elsevier, open in new tab
  3. Sharma A., Tyagi V.V., Chen C.R., Buddhi D. (2013). Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 318-345 open in new tab
  4. Al-Kayiem H. H., Lin S. C., Lukmon A. (2013), Review on Nanomaterials for Thermal Energy Storage Technologies, Nanoscience & Nanotechnology-Asia Vol. 3, pp. 60-71 open in new tab
  5. Li T., Lee J., Wang R., Kang Y. T. (2014). Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application, International Journal of Heat and Mass Transfer, Vol. 75, pp. 1-11 open in new tab
  6. Wu S., Fang G., Chen Z. (2012), Discharging characteristics modeling of cool thermal energy storage system with coil pipes using n-tetradecane as phase change material, Applied Thermal Engineering, Vol. 37, pp. 336-343 open in new tab
  7. Desgrosseilliers L., Whitman C. A., Groulx D., White M. A. (2013), Dodecanoic acid as a promising phase-change material for thermal energy storage, Applied Thermal Engineering, Vol. 53, pp. 37-41 open in new tab
  8. Applied Energy, Vol. 137, 758-772 open in new tab
  9. Diao Y.H., Wang S., Zhao Y.H., Zhu T.T., Li C.Z., Li F.F. (2015), Experimental study of the heat transfer characteristics of a new-type flat micro-heat pipe thermal storage unit, Applied Thermal Engineering, Vol. 89, 871 882 open in new tab
  10. Delgado M., Lázaro A., Mazo J., Peñalosa C., Dolado P, Zalba B. (2015), Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system, Energy Conversion and Management Vol. 106, 201-212 open in new tab
  11. Cano D., Funéz C., Rodriguez L., Valverde J.L., Sanchez-Silva L. (2016), Experimental investigation of a thermal storage system using phase change materials, Applied Thermal Engineering, Vol. 107, pp. 264 open in new tab
  12. Korti A., Tlemsani F. Z. (2016), Experimental investigation of latent heat storage in a coil in PCM storage unit, Journal of Energy Storage, Vol. 5, pp. 177-186 open in new tab
  13. Motahar S, Khodabandeh R. (2016), Experimental study on the melting and solidification of a phase change material enhanced by heat pipe, International Communications in Heat and Mass Transfer 1-6 open in new tab
  14. Wang Y., Wang L., Xie N., Lin X., Chen H. (2016), Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and heat thermal storage unit, International Journal of Heat and Mass Transfer, Vol. 99, 770-781 open in new tab
  15. D'Avignon K., Kummert M. (2016), Experimental assessment of a phase change material storage tank, Applied Thermal Engineering, Vol. 99, 880-891 open in new tab
  16. Agarwal A., Sarviya R.M. (2016), An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material, Engineering Science and Technology, an International Journal, Vol. 19, 619-631 open in new tab
  17. Tayssir M., Eldemerdash S. M., Sakr R. Y., Elshamy A. R., Abdellatif O. E. (2017), Experimental investigation of melting behavior of PCM by using coil heat source inside cylindrical container, Journal of Electrical Systems and Information Technology, Vol. 4, 18 open in new tab
  18. Zondag H.A., de Boera R., Smedinga S.F., van der Kamp J. (2018), Performance analysis of industrial PCM heat J.T., Fabrykiewicz M. | Journal of Mechanical and Energy Engineering, Vol. 2(42), No. 3, 2018, pp. 217-224 open in new tab
  19. Abidi A. A., Mata S., Sopiana K., Sulaimana M.Y., A. Th. (2013), Experimental study of PCM melting in triplex tube thermal energy storage for liquid Energy and Buildings,
  20. Shokouhmand H., Kamkari B. (2013), Experimental sfer characteristics of lauric acid in a rectangular thermal storage unit, Experimental Thermal and Fluid Science, Vol. 50, Silakhori M, Metselaar H. S. C., Mahlia T. M. I., Fauzi H., Baradaran S., Naghavi M. S. (2014), Palmitic stable phase change Energy Conversion open in new tab
  21. Hosseini M.J., Rahimi M., Bahrampoury R. (2014), Experimental and computational evolution of a shell and CM thermal storage system, International Communications in Heat and Mass Behzadi S., Farid M.M. (2014), Long term thermal Applied Energy, Vol. 122, open in new tab
  22. Zhang P., Xiao X., Meng Z.N., Li M. (2015), Heat salt thermal energy storage unit with and without heat transfer enhancement, Diao Y.H., Wang S., Zhao Y.H., Zhu T.T., Li C.Z., Li Experimental study of the heat transfer heat pipe thermal , Vol. 89, 871- open in new tab
  23. Delgado M., Lázaro A., Mazo J., Peñalosa C., Dolado P, sis of a low cost phase change material emulsion for its use as thermal Energy Conversion and Management, open in new tab
  24. Cano D., Funéz C., Rodriguez L., Valverde J.L., Silva L. (2016), Experimental investigation of a rage system using phase change materials, , Vol. 107, pp. 264-270 open in new tab
  25. Korti A., Tlemsani F. Z. (2016), Experimental investigation of latent heat storage in a coil in PCM , Vol. 5, pp. otahar S, Khodabandeh R. (2016), Experimental study on the melting and solidification of a phase change International Communications in Heat and Mass Transfer, Vol. 73, Wang Y., Wang L., Xie N., Lin X., Chen H. (2016), xperimental study on the melting and solidification and-tube latent International Journal of Heat M. (2016), Experimental assessment of a phase change material storage tank, -891
  26. Agarwal A., Sarviya R.M. (2016), An experimental investigation of shell and tube latent heat storage for ax as heat storage material, Engineering Science and Technology, an International Tayssir M., Eldemerdash S. M., Sakr R. Y., Elshamy A. R., Abdellatif O. E. (2017), Experimental investigation il heat source Journal of Electrical , Vol. 4, 18-33 open in new tab
  27. Zondag H.A., de Boera R., Smedinga S.F., van der Kamp J. (2018), Performance analysis of industrial PCM heat storage lab prototype, Journal of Energy Storage 18, 402-413 open in new tab
  28. Neumann H., Niedermaier S., Gschwander S., Schossig P. (2018), Cycling stability of D-mannitol when used as phase change material for thermal storage applications, Thermochimica Acta, Vol. 660, 134-143 open in new tab
  29. Kabeel A.E., El-Samadony Y.A.F., El-Maghlany (2018), Comparative study on the solar still performance utilizing different PCM, Desalination Vol. 432 89 open in new tab
  30. Kabbara M., Groulx D., Joseph A. (2018), A parametric experimental investigation of the heat transfer in a coil in-tank latent heat energy storage system, International Journal of Thermal Sciences, Vol. 130 395-405 open in new tab
Verified by:
Gdańsk University of Technology

seen 120 times

Recommended for you

Meta Tags