Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
Abstract
In this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable data structures (raw B-scans, extracted features, consecutive A-scans) with respect to computational cost and accuracy of surrogates. The usage of raw B-scan data and the applications for processing steps on B-scan profiles in the context of object characterization incur high computational cost so it can be a challenging issue. The proposed surrogate model referred to as the deep regression network (DRN) is utilized for time frequency spectrogram (TFS) of consecutive A-scans. DRN is developed with the main aim being computationally efficient (about 13 times acceleration) compared to conventional network models using B-scan images (2D data). DRN with TFS is favorably benchmarked to the state-of-the-art regression techniques. The experimental results obtained for the proposed model and second-best model, CNN-1D show mean absolute and relative error rates of 3.6mm, 11.8mm and 4.7%, 11.6% respectively. For the sake of supplementary verification under realistic scenarios, it is also applied for scenarios involving noisy data. Furthermore, the proposed surrogate modeling approach is validated using measurement data, which is indicative of suitability of the approach to handle physical measurements as data sources.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1038/s41598-024-65996-0
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Scientific Reports
no. 14,
ISSN: 2045-2322 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Yurt R., Torpi H., Kizilay A., Kozieł S., Mahouti P.: Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects// Scientific Reports -Vol. 14, (2024), s.1-22
- DOI:
- Digital Object Identifier (open in new tab) 10.1038/s41598-024-65996-0
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 39 times
Recommended for you
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
- R. Yurt,
- H. Torpi,
- P. Mahouti
- + 2 authors
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
- R. Yurt,
- H. Torpi,
- A. Kizilay
- + 3 authors
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
- N. Calik,
- F. Gunes,
- S. Kozieł
- + 3 authors
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
- S. Roshani,
- S. Kozieł,
- S. Yahya
- + 4 authors