Didn't find any results in this catalog!
But we have some results in other catalogs.displaying 1000 best results Help
Search results for: TOTAL CHROMATIC SUM
-
Total chromatic sum for trees
PublicationThe total chromatic sum of a graph is the minimum sum of colors (natural numbers) taken over all proper colorings of vertices and edges of a graph. We provide infinite families of trees for which the minimum number of colors to achieve the total chromatic sum is equal to the total chromatic number. We construct infinite families of trees for which these numbers are not equal, disproving the conjecture from 2012.
-
Edge-chromatic sum of trees and bounded cyclicity graphs
Publication -
A 27/26-approximation algorithm for the chromatic sum coloring of bipartitegraphs
PublicationWe consider the CHROMATIC SUM PROBLEM on bipartite graphs which appears to be much harder than the classical CHROMATIC NUMBER PROBLEM. We prove that the CHROMATIC SUM PROBLEM is NP-complete on planar bipartite graphs with Delta less than or equal to 5, but polynomial on bipartite graphs with Delta less than or equal to 3, for which we construct an O(n(2))-time algorithm. Hence, we tighten the borderline of intractability for this...
-
Relations between the domination parameters and the chromatic index of a graph
PublicationIn this paper we show bounds for the sum and the product of the domination parameters and the chromatic index of a graph. We alsopresent some families of graphs for which these bounds are achieved.
-
A note on polynomial algorithm for cost coloring of bipartite graphs with Δ ≤ 4
PublicationIn the note we consider vertex coloring of a graph in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of coloring is the sum of costs incurred at each vertex. We show that the minimum cost coloring problem for n-vertex bipartite graph of degree ∆≤4 can be solved in O(n^2) time. This extends Jansen’s result [K.Jansen,The optimum cost chromatic partition problem, in:...
-
SCIENCE OF THE TOTAL ENVIRONMENT
Journals -
Infinite chromatic games
PublicationIn the paper we introduce a new variant of the graph coloring game and a new graph parameter being the result of the new game. We study their properties and get some lower and upper bounds, exact values for complete multipartite graphs and optimal, often polynomial-time strategies for both players provided that the game is played on a graph with an odd number of vertices. At the end we show that both games, the new and the classic...
-
T-colorings, divisibility and circular chromatic number
PublicationLet T be a T-set, i.e., a finite set of nonnegative integers satisfying 0 ∈ T, and G be a graph. In the paper we study relations between the T-edge spans espT (G) and espd⊙T (G), where d is a positive integer and d ⊙ T = {0 ≤ t ≤ d (max T + 1): d |t ⇒ t/d ∈ T} . We show that espd⊙T (G) = d espT (G) − r, where r, 0 ≤ r ≤ d − 1, is an integer that depends on T and G. Next we focus on the case T = {0} and show that espd⊙{0} (G) =...
-
Note on the variance of the sum of gaussian functonals
PublicationDowodzi się oszacowania wariancji sum funkcjonałów losowych, konstruowanych dla zależnego ciągu gaussowskiego.Let (Xi; i = 1; 2; : : :) be a Gaussian sequence with Xi 2 N(0; 1) for each i and suppose its correlation matrix R = (ij)i;j1 is the matrix of some linear operator R : l2 ! l2. Then for fi 2 L 2(), i = 1; 2; : : : ; where is the standard normal distribution, we estimate the variation of the sum of the Gaussian functionals...
-
Chromatic cost coloring of weighted bipartite graphs
PublicationGiven a graph G and a sequence of color costs C, the Cost Coloring optimization problem consists in finding a coloring of G with the smallest total cost with respect to C. We present an analysis of this problem with respect to weighted bipartite graphs. We specify for which finite sequences of color costs the problem is NP-hard and we present an exact polynomial algorithm for the other finite sequences. These results are then extended...