Filters
total: 137
filtered: 20
Search results for: structural strength
-
Strucutral steel - tensile test results
Open Research DataModern floating structures such as ships, oil platforms and offshore wind towers are built mostly of structural steel. It is a material that is subject to requirements which, when met, allows the construction and safe operation of the structure throughout its entire work cycle. One of the basic criteria that a material must meet is its strength. The...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 60mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - Charpy impact test reslut in vary tempetatures
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - tensile test record
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - 3D fracture scan
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 60 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...