Filters
total: 447
filtered: 360
Search results for: FAST FREQUENCY HOPPING TECHNIQUE
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublicationDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
Study of Photovoltaic Devices with Hybrid Active Layer
PublicationThe aim of this work is to present the influences of composition of the material andmanufacturing technology conditions of the organic photovoltaics devices (OPv) with the organicand hybrid bulk heterojunction on the active layers properties and cells performance. The layers wereproduced by using small molecular compounds: the metal-phthalocyanine (MePc) and perylenederivatives (PTCDA) and the titanium dioxide (TiO2) nanoparticles....
-
Highly efficient maximum power point tracking control technique for PV system under dynamic operating conditions
PublicationThe application of small-scale electrical systems is widespread and the integration of Maximum Power Point Tracking (MPPT) control for Photovoltaic systems with battery applications further enhances the techno-economic feasibility of renewable systems. For this purpose, a novel MPPT control system using Dynamic Group based cooperation optimization (DGBCO) algorithm is utilized for PV systems. The population in the DGBCO is divided...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublicationA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
-
Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to...
-
Finite-difference time-domain analyses of active cloaking for electrically-large objects
PublicationInvisibility cloaking devices constitute a unique and potentially disruptive technology, but only if they can work over broad bandwidths for electrically-large objects. So far, the only known scheme that allows for broadband scattering cancellation from an electrically-large object is based on an active implementation where electric and magnetic sources are deployed over a surface surrounding the object, but whose ‘switching on’...
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Radar with rotary head
PublicationNowadays usage of radars is no longer reserved only for the military purpose. It finds many applications in various areas of science and industry. It may be used in order to obtain extended information about the state of critical infrastructure, like shipyards or petrochemical plants. Furthermore, it may be applied in vision denied environments. The aim of this project...