Filters
total: 344
filtered: 325
Search results for: FRACTIONAL ORDER CIRCUITS MAXWELL’S EQUATIONS RIEMANN-LIOUVILLE DERIVATIVE
-
Fractional equations of Volterra type involving a Riemann Liouville derivative
PublicationIn this paper, we discuss the existence of solutions of fractional equations of Volterra type with the Riemann Liouville derivative. Existence results are obtained by using a Banach fixed point theorem with weighted norms and by a monotone iterative method too. An example illustrates the results.
-
Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative
PublicationBadano równania neutralne typu ułamkowego z odchylonym argumentem. Podano warunki dostateczne na istnienie jednego rozwiązania.
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublicationIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Comments on various extensions of the Riemann–Liouville fractional derivatives : About the Leibniz and chain rule properties
PublicationStarting from the Riemann–Liouville derivative, many authors have built their own notion of fractional derivative in order to avoid some classical difficulties like a non zero derivative for a constant function or a rather complicated analogue of the Leibniz relation. Discussing in full generality the existence of such operator over continuous functions, we derive some obstruction Lemma which can be used to prove the triviality...
-
Systems of Nonlinear Fractional Differential Equations
PublicationUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
On Applications of Fractional Derivatives in Electromagnetic Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell's equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are...
-
On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with regard to element models applied in the circuit theory. The properties of FO derivatives required for the circuit-level modeling are formulated. Potential problems related to the generalization of transmission-line equations with the use of FO derivatives are presented. It is demonstrated that some formulations of FO derivatives have limited...
-
On Applications of Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are discussed from the point of view of applications in the circuit theory. The properties of FO derivatives required for the circuit-level modelling are formulated. Potential problems related to the generalization of transmission line equations with the use of FO derivatives are presented. It is demonstrated that some of formulations of the FO derivatives have limited...
-
Electromagnetic-based derivation of fractional-order circuit theory
PublicationIn this paper, foundations of the fractional-order circuit theory are revisited. Although many papers have been devoted to fractional-order modelling of electrical circuits, there are relatively few foundations for such an approach. Therefore, we derive fractional-order lumped-element equations for capacitors, inductors and resistors, as well as Kirchhoff’s voltage and current laws using quasi-static approximations of fractional-order...
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Fundamental properties of solutions to fractional-order Maxwell's equations
PublicationIn this paper, fundamental properties of solutions to fractional-order (FO) Maxwell's equations are analysed. As a starting point, FO Maxwell's equations are introduced in both time and frequency domains. Then, we introduce and prove the fundamental properties of electromagnetic field in FO electromagnetics, i.e. energy conservation, uniqueness of solutions, and reciprocity. Furthermore, the algorithm of the plane wave simulation...
-
GENERAL DYNAMIC PROJECTING OF MAXWELL EQUATIONS
PublicationA complete – system of Maxwell equations is splitting into independent subsystems by means of a special dynamic projecting technique. The technique relies upon a direct link between field components that determine correspondent subspaces. The explicit form of links and corresponding subspace evolution equations are obtained in conditions of certain symmetry, it is illustrated by examples of spherical and quasi-one-dimensional waves.
-
Multiple Solutions to Third-Order Differential Equations with Derivative Dependence and Deviating Arguments
PublicationIn this paper, we give some new results for multiplicity of positive (nonnegative) solutions for third-order differential equations with derivative dependence, deviating arguments and Stieltjes integral boundary conditions. We discuss our problem with advanced argument α and arbitrary β ∈ C([0,1],[0,1]), see problem (2). It means that argument β can change the character on [0,1], so β can be delayed in some set J ⊂ [0,1] and advanced...
-
Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator
PublicationA new approach is used to investigate the analytical solutions of the mathematical fractional Casson fluid model that is described by the Constant Proportional Caputo fractional operator having non-local and singular kernel near an infinitely vertical plate. The phenomenon has been expressed in terms of partial differential equations, and the governing equations were then transformed in non-dimensional form. For the sake of generalized...
-
Signal Propagation in Electromagnetic Media Modelled by the Two-Sided Fractional Derivative
PublicationIn this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no obvious relation between causality of the derivative and causality of the transfer function induced by this derivative. Hence, causality...
-
Signal propagation in electromagnetic media described by fractional-order models
PublicationIn this paper, signal propagation is analysed in electromagnetic media described by fractional-order (FO) models (FOMs). Maxwell’s equations with FO constitutive relations are introduced in the time domain. Then, their phasor representation is derived for one-dimensional case of the plane wave propagation. With the use of the Fourier transformation, the algorithm for simulation of the non-monochromatic wave propagation is introduced....
-
Fractional-order Systems and Synchronous Generator Voltage Regulator
PublicationModern regulators of synchronous generators, including voltage regulators, are digital systems, in their vast majority with standard structures contained in the IEEE standard. These are systems described with stationary differential equations of integral order. Differential equations of fractional order are not employed in regulators for synchronous generator control. This paper presents an analysis of the possibilities of using...
-
Boundary problems for fractional differential equations
PublicationIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
Functional delay fractional equations
PublicationIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.
-
Positive solutions to second-order differential equations with dependence on the first-order derivative and nonlocal boundary conditions
PublicationIn this paper, we consider the existence of positive solutions for second-order differential equations with deviating arguments and nonlocal boundary conditions. By the fixed point theorem due to Avery and Peterson, we provide sufficient conditions under which such boundary value problems have at least three positive solutions. We discuss our problem both for delayed and advanced arguments α and also in the case when α(t)=t, t∈[0,1]....
-
Fractional Order Dynamic Positioning Controller
PublicationImproving the performance of Dynamic Positioning System in such applications as station keeping, position mooring and slow speed references tracking requires improving the position and heading control precision. These goals can be achieved through the improvement of the ship control system. Fractional-order calculus is a very useful tool which extends classical, integer-order calculus and is used in contemporary modeling and control...
-
Fractional Order Circuit Elements Derived from Electromagnetism
PublicationIn this paper, derivations of fractional-order (FO) circuit-element equations from electromagnetism are presented. Whilst many papers are devoted to FO modelling of electrical circuits, there are no strong foundations for such an approach. Therefore, we investigate relations between the FO electromagnetism and the FO circuit theory. Our derivations start from quasi-static (QS) approximations of Maxwell's equations in media with...
-
Successive Iterative Method for Higher-Order Fractional Differential Equations Involving Stieltjes Integral Boundary Conditions
PublicationIn this paper, the existence of positive solutions to fractional differential equations with delayed arguments and Stieltjes integral boundary conditions is discussed. The convergence of successive iterative method of solving such problems is investigated. This allows us to improve some recent works. Some numerical examples illustrate the results.
-
Fractional differential equations with causal operators
PublicationWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
A NUMERICAL STUDY ON THE DYNAMICS OF DENGUE DISEASE MODEL WITH FRACTIONAL PIECEWISE DERIVATIVE
PublicationThe aim of this paper is to study the dynamics of Dengue disease model using a novel piecewise derivative approach in the sense of singular and non-singular kernels. The singular kernel operator is in the sense of Caputo, whereas the non-singular kernel operator is the Atangana–Baleanu Caputo operator. The existence and uniqueness of a solution with piecewise derivative are examined for the aforementioned problem. The suggested...
-
Fractional Variable-Order Derivative and Difference Operators and Their Applications to Dynamical Systems Modelling
Publication -
Positive solutions to advanced fractional differential equations with nonlocal boundary conditions
PublicationWe study the existence of positive solutions for a class of higher order fractional differential equations with advanced arguments and boundary value problems involving Stieltjes integral conditions. The fixed point theorem due to Avery-Peterson is used to obtain sufficient conditions for the existence of multiple positive solutions. Certain of our results improve on recent work in the literature.
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
Simulation of Wave Propagation in Media Described by Fractional-Order Models
PublicationIn this paper, algorithms for simulation of the wave propagation in electromagnetic media described by fractional-order (FO) models (FOMs) are presented. Initially, fractional calculus and FO Maxwell's equations are introduced. The problem of the wave propagation is formulated for media described by FOMs. Then, algorithms for simulation of the non-monochromatic wave propagation are presented which employ computations in the time...
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublicationIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)
PublicationThe paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...
-
First-order differential equations with nonlocal boundary conditions
PublicationWe study a first-order boundary value problem subject to some boundary conditions given by Riemann-Stieltjes integrals. Using a monotone iterative method, we formulate sufficient conditions which guarantee the existence of extremal or quasi-solutions in the corresponding region bounded by upper and lower solutions of our problems. The case when a unique solution exists is also investigated. Some examples are given to illustrate...
-
Simulation of Signal Propagation Along Fractional-Order Transmission Lines
PublicationIn this paper, the simulation method of signal propagation along fractional-order (FO) transmission lines is presented. Initially, fractional calculus and the model of FO transmission line are introduced. Then, the algorithm allowing for simulation of the nonmonochromatic wave propagation along FO transmission lines is presented. It employs computations in the frequency domain, i.e., an analytical excitation is transformed to the...
-
On possible applications of media described by fractional-order models in electromagnetic cloaking
PublicationThe purpose of this paper is to open a scientific discussion on possible applications of media described by fractional-order (FO) models (FOMs) in electromagnetic cloaking. A 2-D cloak based on active sources and the surface equivalence theorem is simulated. It employs a medium described by FOM in communication with sources cancelling the scattered field. A perfect electromagnetic active cloak is thereby demonstrated with the use...
-
Fractional differential equations with deviating arguments
PublicationDla równań różniczkowych typu ułamkowego, zostały podane warunki dostateczne na istnienie jednego rozwiązania lub rozwiazań ekstremalnych. Nierówności różniczkowe są też doskutowane.
-
Monotone iterative method for first-order differential equations at resonance
PublicationThis paper concerns the application of the monotone iterative technique for first-order differential equations involving Stieltjes integrals conditions. We discuss such problems at resonance when the measure in the Stieltjes integral is positive and also when this measure changes the sign. Sufficient conditions which guarantee the existence of extremal, unique and quasi-solutions are given. Three examples illustrate the results.
-
Positive solutions to boundary value problems for impulsive second-order differential equations
PublicationIn this paper, we discuss four-point boundary value problems for impulsive second-order differential equations. We apply the Krasnoselskii's fixed point theorem to obtain sufficient conditions under which the impulsive second-order differential equations have positive solutions. An example is added to illustrate theoretical results.
-
Quasi-solutions for generalized second order differential equations with deviating arguments
PublicationThis paper deal with boundary value problems for generalized second order differential equations with deviating arguments. Existence of quasi-solutions and solutions are proved by monotone iterative method. Examples with numerical results are added.
-
Some applications of fractional order calculus
Publication -
Fractional Order Models of Dynamic Systems
Publication -
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublicationThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Stability analysis of interconnected discrete-time fractional-order LTI state-space systems
PublicationIn this paper, a stability analysis of interconnected discrete-time fractional-order (FO) linear time-invariant (LTI) state-space systems is presented. A new system is formed by interconnecting given FO systems using cascade, feedback, parallel interconnections. The stability requirement for such a system is that all zeros of a non-polynomial characteristic equation must be within the unit circle on the complex z-plane. The obtained...
-
Functional differential equations of second order.
PublicationPraca dotyczy problemu brzegowego dla równań różniczkowo-funkcyjnych 2-go rzędu. Stosując metodę kwasilinearyzacji pokazano, że odpowiednio skonstruowane ciągi monotoniczne są zbieżne do jedynego rozwiązania danego problemu i ustalono szybkość tej zbieżności. Pokazano również pewną relację pomiędzy rozwiązaniami odpowiednich liniowych równań różniczkowo-funkcyjnych z warunkami brzegowymi.
-
First-order advanced difference equations
PublicationBadano istnienie rozwiązań równań różnicowych rzędu pierwszego z wyprzedzonymi argumentami. Podano warunki na istnienie jedynego rozwiązania. Przedmiotem badań były też nierówności różnicowe związane z w/w równaniami różnicowymi. Otrzymane wyniki zilustrowano na przykładzie.
-
Stability of Discrete Fractional Order State-space Systems
Publication -
Comparison and validation of integer and fractional order ultracapacitor models
Publication -
Time domain validation of ultracapacitor fractional order model
Publication -
Diffusion process modeling by using fractional-order models
Publication -
Preconditioners with Low Memory Requirements for Higher-Order Finite-Element Method Applied to Solving Maxwell’s Equations on Multicore CPUs and GPUs
PublicationThis paper discusses two fast implementations of the conjugate gradient iterative method using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations. In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on the lowest level is solved...
-
A COMPUTATIONAL ALGORITHM FOR THE NUMERICAL SOLUTION OF NONLINEAR FRACTIONAL INTEGRAL EQUATIONS
Publication