Filters
total: 8
filtered: 7
Chosen catalog filters
Search results for: MICROPOLAR SOLIDS
-
Surface and interfacial anti-plane waves in micropolar solids with surface energy
PublicationIn this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity....
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublicationFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
On Solvability of Boundary Value Problems for Elastic Micropolar Shells with Rigid Inclusions
PublicationIn the framework of the linear theory of micropolar shells, existence and uniqueness theorems for weak solutions of boundary value problems describing small deformations of elastic micropolar shells connected to a system of absolutely rigid bodies are proved. The definition of a weak solution is based on the principle of virial movements. A feature of this problem is non-standard boundary conditions at the interface between the...
-
On solvability of initial boundary-value problems of micropolar elastic shells with rigid inclusions
PublicationThe problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated...
-
A Nonlinear Model of a Mesh Shell
PublicationFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...
-
Minimal surfaces and conservation laws for bidimensional structures
PublicationWe discuss conservation laws for thin structures which could be modeled as a material minimal surface, i.e., a surface with zero mean curvatures. The models of an elastic membrane and micropolar (six-parameter) shell undergoing finite deformations are considered. We show that for a minimal surface, it is possible to formulate a conservation law similar to three-dimensional non-linear elasticity. It brings us a path-independent...
-
On rotational instability within the nonlinear six-parameter shell theory
PublicationWithin the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters...