Search results for: adaboost classifier - Bridge of Knowledge

Search

Search results for: adaboost classifier

Search results for: adaboost classifier

  • Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition

    The article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...

    Full text to download in external service

  • Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features

    Publication

    - Year 2016

    This paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...

    Full text to download in external service

  • Playback detection using machine learning with spectrogram features approach

    Publication

    - Year 2017

    This paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...

    Full text available to download

  • Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets

    Publication

    - Informatica - Year 2021

    This paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...

    Full text available to download

  • Multiscaled Hybrid Features Generation for AdaBoost Object Detection

    This work presents the multiscaled version of modified census features in graphical objects detection with AdaBoost cascade training algorithm. Several experiments with face detector training process demonstrate better performance of such features over ordinal census and Haar-like approaches. The possibilities to join multiscaled census and Haar features in single hybrid cascade of strong classifiers are also elaborated and tested....

    Full text available to download