Filters
total: 1855
filtered: 8
-
Catalog
- Publications 1394 available results
- Journals 8 available results
- Publishing Houses 1 available results
- People 178 available results
- Inventions 3 available results
- Projects 5 available results
- Research Teams 3 available results
- e-Learning Courses 200 available results
- Events 55 available results
- Open Research Data 8 available results
Chosen catalog filters
Search results for: prad korozyjny
-
Data obtained by computation for X-ray imaging of grating without magnification using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 2 using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 4 using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 8 using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Study of the effect of Dr fimbria presence on the accumulation of recombinant Escherichia coli strain: AAEC191A/pCC90 cells in polystyrene in a dynamic system
Open Research DataThe process of surface colonization, known as biofilm development, begins with bacterial attachment and involves various physicochemical and molecular interactions. Adhesion to neutral surfaces typically involves non-specific interactions, while adhesion to biological surfaces is governed by specific ligand-receptor interactions. In the experiment,...
-
Study of the effect of Dr fimbria presence on the accumulation of recombinant Escherichia coli strain: AAEC191A/pCC90 cells in glass in a dynamic system
Open Research DataThe process of surface colonization, known as biofilm development, begins with bacterial attachment and involves various physicochemical and molecular interactions. Adhesion to neutral surfaces typically involves non-specific interactions, while adhesion to biological surfaces is governed by specific ligand-receptor interactions. In the experiment,...
-
Data obtained by numerical simulation for X-ray focusing using a finite difference method
Open Research DataThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied.
-
Data obtained by computation for X-ray focusing using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of several X-ray refractive lenses is considered. Gaussian beams are exact solutions of the paraxial equation. The Helmholtz equation describes the propagation of a monochromatic electromagnetic wave. Since the widths of the beams are much larger than the wavelength of X-rays, Gaussian...