Database of algebraic periods of quasi-unipotent orientation-preserving homeomorphisms of orientable surfaces - Open Research Data - MOST Wiedzy

Wyszukiwarka

Database of algebraic periods of quasi-unipotent orientation-preserving homeomorphisms of orientable surfaces

Opis

The set of algebraic periods of a map contains important information about periodic points and, in addition, is a homotopy invariant of the map. It is determined by indices of nonzero Dold coefficients which are computed purely algebraically from maps induced on homology groups of a considered space. In this dataset, we include for a given g=1,2,...,30, all possible algebraic periods of quasi-unipotent orientation-preserving homeomorphisms of a closed orientable surface of genus g.

In fact, the database consists of three parts. In Algebraic_periods_orientable_surface.zip there are three folders, and each of them contains 30 text files, whose names differ only in the genus number #g=1,2,...,30.

  • The folder Algebraic_periods consists of 30 files genus#g_AP.txt containing the list of all algebraic periods of quasi-unipotent orientation-preserving homeomorphisms of a closed orientable surface of genus #g.
  • The folder Odd_algebraic_periods consists of 30 files genus#g_APodd.txt containing the list of all odd algebraic periods, known also as the minimal sets of Lefschetz periods, of quasi-unipotent orientation-preserving homeomorphisms of a closed orientable surface of genus #g.
  • The folder Minimal_algebraic_periods consists of 30 files min_genus#g_AP.txt containing the list of all algebraic periods of quasi-unipotent orientation-preserving homeomorphisms of a closed orientable surface of genus #g, for which the genus #g is minimal, i.e. they do not occur on the lists for smaller genera.

Odd algebraic periods, used by other authors under the name minimal set of Lefschetz periods, were intensively studied in the context of Morse-Smale diffeomorphisms, which are also quasi-unipotent. Note that if a map is not quasi-unipotent, then it has infinitely many algebraic periods.

The data was produced in python using SageMath. The algorithm is based on the description of spectra of finite order integral symplectic matrices of dimension 2g, which represent maps on the first homology group of the surface, and connection with Dold coefficients using the Moebius inversion formula. The details can be found in the paper G. Graff, W. Marzantowicz and Ł. P. Michalak, Dold coefficients of quasi-unipotent homeomorphisms of orientable surfaces, preprint (2024).

 

Plik z danymi badawczymi

Algebraic_periods_orientable_surface.zip
143.0 MB, S3 ETag 5eb65dafdd554a538185c4d951a1ac32-1, pobrań: 20
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
pobierz plik Algebraic_periods_orientable_surface.zip

Informacje szczegółowe o pliku

Licencja:
Creative Commons: by 4.0 otwiera się w nowej karcie
CC BY
Uznanie autorstwa

Informacje szczegółowe

Rok publikacji:
2024
Data zatwierdzenia:
2024-11-06
Język danych badawczych:
angielski
Dyscypliny:
  • matematyka (Dziedzina nauk ścisłych i przyrodniczych)
DOI:
Identyfikator DOI 10.34808/pfes-fh25 otwiera się w nowej karcie
Finansowanie:
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Cytuj jako

wyświetlono 68 razy