Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 5 and homology groups with the sum of ranks less or equal to10 - Open Research Data - MOST Wiedzy

Wyszukiwarka

Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 5 and homology groups with the sum of ranks less or equal to10

Opis

An important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 5 and its self-maps f  with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of f. For sufficiently large r the invariant Jr[f] is independent of the choice of r and in that case it is natural to write J[f] instead of Jr[f]. We provide the values of the simplified version of the invariant: J[f] (mod 2) (which is equal either J[f] or J[f]+1) for  manifolds of dimension 5 having the sum of ranks of homology groups less or equal 10. The results are based on the combinatorial scheme for computing J[f] introduced in “Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers” by G. Graff and A. Kaczkowska, [Cent. Eur. J. Math., 10(6), 2012, 2160-2172, https://doi.org/10.2478/s11533-012-0122-7]. The data contains text files of the form J[vector_of_ranks _of_homology_groups].txt. Each file consists of all possible triples, structured as follows: the first position contains a sequence of lists, where the i-th list corresponds to the degrees of non-zero eigenvalues of the i-th induced homomorphism, the second position contains a set of non-zero periodic expansion coefficients, the third position contains corresponding value of the invariant J[f].

Plik z danymi badawczymi

J_dim5 (1).zip
77.3 kB, S3 ETag b677b00bb3ca167ab2c6baf0510e8bf5-1, pobrań: 59
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
pobierz plik J_dim5 (1).zip

Informacje szczegółowe o pliku

Licencja:
Creative Commons: by 4.0 otwiera się w nowej karcie
CC BY
Uznanie autorstwa

Informacje szczegółowe

Rok publikacji:
2020
Data zatwierdzenia:
2020-12-17
Język danych badawczych:
angielski
Dyscypliny:
  • matematyka (Dziedzina nauk ścisłych i przyrodniczych)
DOI:
Identyfikator DOI 10.34808/zjq8-fq46 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Powiązane zasoby

Cytuj jako

wyświetlono 154 razy