A framework for Air Quality Management Zones - Useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk - Publikacja - MOST Wiedzy

Wyszukiwarka

A framework for Air Quality Management Zones - Useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk

Abstrakt

There is a growing recognition of the importance of proper urban design in the improvement of air flow and pollution dispersion and in reducing human exposure to air pollution. However, a limited number of studies have been published so far focusing on the development of standard procedures which could be applied by urban planners to effectively evaluate urban conditions with respect to air quality. To fill this gap, a new approach for the determination of urban Air Quality Management Zones (AQMZs) was proposed and presented based on two case studies: Antwerp, Belgium and Gdańsk, Poland. The main objectives of the study were to 1) formulate a theoretical framework for the management of urban ventilation potential and human exposure to air pollution and to 2) develop methods for its implementation by means of a geographic information system (GIS). As a result of the analysis, the typologies that may be associated with decreased ventilation potential and the areas that require close monitoring due to potential human exposure to air pollution were identified for both cities. It is advocated that delimiting these typologies – combined with investigating local climate, wind and topography conditions and air pollution characteristics – could constitute a preliminary step in the urban planning process aimed at air quality improvement. These methods can be further applied to other urban areas in order to indicate where detailed studies are required and to facilitate the development of planning guidelines. Moreover, the directions for further research and urban planning strategies were discussed.

Cytowania

  • 4 4

    CrossRef

  • 0

    Web of Science

  • 4 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 297 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
BUILDING AND ENVIRONMENT nr 174, strony 1 - 13,
ISSN: 0360-1323
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Badach J., Voordeckers D., Nyka L., Van Acker M.: A framework for Air Quality Management Zones - Useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk// BUILDING AND ENVIRONMENT -Vol. 174, (2020), s.1-13
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.buildenv.2020.106743
Bibliografia: test
  1. M. Amann, I. Bertok, J. Borken-Kleefeld, J. Cofala, C. Heyes, L. H€ oglund-Isaksson, Z. Klimont, B. Nguyen, M. Posch, P. Rafaj, R. Sandler, W. Sch€ opp, F. Wagner, W. Winiwarter, Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications, Environ. Model. Software 26 (2011) 1489-1501, https://doi.org/10.1016/j.envsoft.2011.07.012. otwiera się w nowej karcie
  2. Eurostat, Urban Europe: Statistics on Cities, Towns and Suburbs. 2016 Edition, Publications office of the European Union, Luxembourg, 2016, https://doi.org/ 10.2785/91120. otwiera się w nowej karcie
  3. J. Lelieveld, K. Klingmüller, A. Pozzer, U. P€ oschl, M. Fnais, A. Daiber, T. Münzel, Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions, Eur. Heart J. 40 (2019) 1590-1596, https://doi. org/10.1093/eurheartj/ehz135. otwiera się w nowej karcie
  4. C. Yuan, E. Ng, L.K. Norford, Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies, Build. Environ. 71 (2014) 245-258, https://doi.org/10.1016/j. buildenv.2013.10.008. otwiera się w nowej karcie
  5. M. Weber, P.P.J. Driessen, Environmental policy integration: the role of policy windows in the integration of noise and spatial planning, Environ. Plann. C Govern. Pol. 28 (2010) 1120-1134, https://doi.org/10.1068/c0997. otwiera się w nowej karcie
  6. H. Runhaar, P.P.J. Driessen, L. Soer, Sustainable urban development and the challenge of policy integration: an assessment of planning tools for integrating spatial and environmental planning in The Netherlands, Environ. Plann. Plann. Des. 36 (2009) 417-431, https://doi.org/10.1068/b34052. otwiera się w nowej karcie
  7. M. C� ardenas Rodríguez, L. Dupont-Courtade, W. Oueslati, Air pollution and urban structure linkages: evidence from European cities, Renew. Sustain. Energy Rev. 53 (2016) 1-9, https://doi.org/10.1016/j.rser.2015.07.190. otwiera się w nowej karcie
  8. B.-J. He, L. Ding, D. Prasad, Enhancing urban ventilation performance through the development of precinct ventilation zones: a case study based on the Greater Sydney, Australia, Sustain. Cities Soc. 47 (2019), 101472, https://doi.org/ 10.1016/j.scs.2019.101472. otwiera się w nowej karcie
  9. L. Merlier, F. Kuznik, G. Rusaou€ en, S. Salat, Derivation of generic typologies for microscale urban airflow studies, Sustain. Cities Soc. 36 (2018) 71-80, https://doi. org/10.1016/j.scs.2017.09.017. otwiera się w nowej karcie
  10. Y. Luo, J. He, Y. Ni, Analysis of urban ventilation potential using rule-based modeling, Comput. Environ. Urban Syst. 66 (2017) 13-22, https://doi.org/ 10.1016/j.compenvurbsys.2017.07.005. otwiera się w nowej karcie
  11. M.J. Alcoforado, H. Andrade, A. Lopes, J. Vasconcelos, Application of climatic guidelines to urban planning. The example of Lisbon (Portugal), Landsc. Urban Plann. 90 (2009) 56-65, https://doi.org/10.1016/j.landurbplan.2008.10.006. otwiera się w nowej karcie
  12. T. Houet, G. Pigeon, Mapping urban climate zones and quantifying climate behaviors -an application on Toulouse urban area (France), Environ. Pollut. 159 (2011) 2180-2192, https://doi.org/10.1016/j.envpol.2010.12.027. otwiera się w nowej karcie
  13. I.D. Stewart, T.R. Oke, Local climate zones for urban temperature studies, Bull. Am. Meteorol. Soc. 93 (2012) 1879-1900, https://doi.org/10.1175/BAMS-D-11- 00019.1. otwiera się w nowej karcie
  14. E. Ng, C. Yuan, L. Chen, C. Ren, J.C.H. Fung, Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong, Landsc. Urban Plann. 101 (2011) 59-74, https://doi.org/ 10.1016/j.landurbplan.2011.01.004. otwiera się w nowej karcie
  15. F. Guo, P. Zhu, S. Wang, D. Duan, Y. Jin, Improving natural ventilation performance in a high-density urban district: a building morphology method, Procedia Eng 205 (2017) 952-958, https://doi.org/10.1016/j. proeng.2017.10.149. otwiera się w nowej karcie
  16. E. Ng, Policies and technical guidelines for urban planning of high-density cities - air ventilation assessment (AVA) of Hong Kong, Build. Environ. 44 (2009) 1478-1488, https://doi.org/10.1016/j.buildenv.2008.06.013. otwiera się w nowej karcie
  17. L. Chen, J. Hang, M. Sandberg, L. Claesson, S. Di Sabatino, H. Wigo, The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models, Build. Environ. 118 (2017) 344-361, https://doi.org/10.1016/j.buildenv.2017.03.042. otwiera się w nowej karcie
  18. S.J. Mei, J.T. Hu, D. Liu, F.Y. Zhao, Y. Li, Y. Wang, H.Q. Wang, Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density, Energy Build. 155 (2017) 324-338, https://doi.org/10.1016/j.enbuild.2017.09.019. otwiera się w nowej karcie
  19. F. Yang, F. Qian, S.S.Y. Lau, Urban form and density as indicators for summertime outdoor ventilation potential: a case study on high-rise housing in Shanghai, Build. Environ. Times 70 (2013) 122-137, https://doi.org/10.1016/j. buildenv.2013.08.019. otwiera się w nowej karcie
  20. T. Kubota, M. Miura, Y. Tominaga, A. Mochida, Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: development of guidelines for realizing acceptable wind environment in residential neighborhoods, Build. Environ. Times 43 (2008) 1699-1708, https://doi.org/ 10.1016/j.buildenv.2007.10.015. otwiera się w nowej karcie
  21. Y. Peng, Z. Gao, W. Ding, An approach on the correlation between urban morphological parameters and ventilation performance, Energy Procedia 142 (2017) 2884-2891, https://doi.org/10.1016/j.egypro.2017.12.412. otwiera się w nowej karcie
  22. G.E. Lau, K. Ngan, Analysing urban ventilation in building arrays with the age spectrum and mean age of pollutants, Build. Environ. 131 (2018) 288-305, https://doi.org/10.1016/j.buildenv.2018.01.010. otwiera się w nowej karcie
  23. X. Xie, Z. Huang, J.S. Wang, Impact of building configuration on air quality in street canyon, Atmos. Environ. 39 (2005) 4519-4530, https://doi.org/10.1016/j. atmosenv.2005.03.043. otwiera się w nowej karcie
  24. J. Zhong, X.M. Cai, W.J. Bloss, Coupling dynamics and chemistry in the air pollution modelling of street canyons: a review, Environ. Pollut. 214 (2016) 690-704, https://doi.org/10.1016/j.envpol.2016.04.052. otwiera się w nowej karcie
  25. M.S. Wong, J.E. Nichol, P.H. To, J. Wang, A simple method for designation of urban ventilation corridors and its application to urban heat island analysis, Build. Environ. 45 (2010) 1880-1889, https://doi.org/10.1016/j.buildenv.2010.02.019. otwiera się w nowej karcie
  26. J.H. Amorim, V. Rodrigues, R. Tavares, J. Valente, C. Borrego, CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion, Sci. Total Environ. 461-462 (2013) 541-551, https://doi.org/10.1016/j. scitotenv.2013.05.031. otwiera się w nowej karcie
  27. A. Wania, M. Bruse, N. Blond, C. Weber, Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations, J. Environ. Manag. 94 (2012) 91-101, https://doi.org/10.1016/j. jenvman.2011.06.036. otwiera się w nowej karcie
  28. D.J. Nowak, E.J. Greenfield, Tree and impervious cover change in U.S. cities, Urban For. Urban Green. 11 (2012) 21-30, https://doi.org/10.1016/j. ufug.2011.11.005. otwiera się w nowej karcie
  29. Y.M. Park, M.P. Kwan, Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored, Health Place 43 (2017) 85-94, https://doi.org/10.1016/j.healthplace.2016.10.002. otwiera się w nowej karcie
  30. L. Guo, J. Luo, M. Yuan, Y. Huang, H. Shen, T. Li, The influence of urban planning factors on PM2.5 pollution exposure and implications: a case study in China based on remote sensing, LBS, and GIS data, Sci. Total Environ. 659 (2019) 1585-1596, https://doi.org/10.1016/j.scitotenv.2018.12.448. otwiera się w nowej karcie
  31. N. Rose, C. Cowie, R. Gillett, G.B. Marks, Weighted road density: a simple way of assigning traffic-related air pollution exposure, Atmos. Environ. 43 (2009) 5009-5014, https://doi.org/10.1016/j.atmosenv.2009.06.049. otwiera się w nowej karcie
  32. L.D. Frank, P. Engelke, Multiple impacts of the built environment on public health: walkable places and the exposure to air pollution, Int. Reg. Sci. Rev. 28 (2005) 193-216, https://doi.org/10.1177/0160017604273853. otwiera się w nowej karcie
  33. D. Van Brusselen, W. Arrazola de Oñate, B. Maiheu, S. Vranckx, W. Lefebvre, S. Janssen, T.S. Nawrot, B. Nemery, D. Avonts, Health impact assessment of a predicted air quality change by moving traffic from an urban ring road into a tunnel. The case of Antwerp, Belgium, PloS One 11 (2016), e0154052, https://doi. org/10.1371/journal.pone.0154052. otwiera się w nowej karcie
  34. J. Luo, K. Boriboonsomsin, M. Barth, Reducing pedestrians' inhalation of traffic- related air pollution through route choices: case study in California suburb, J. Transp. Heal. 10 (2018) 111-123, https://doi.org/10.1016/j.jth.2018.06.008. otwiera się w nowej karcie
  35. M. Tainio, A.J. de Nazelle, T. G€ otschi, S. Kahlmeier, D. Rojas-Rueda, M. J. Nieuwenhuijsen, T.H. de S� a, P. Kelly, J. Woodcock, Can air pollution negate the health benefits of cycling and walking? Prev. Med. 87 (2016) 233-236, https://doi. org/10.1016/j.ypmed.2016.02.002. otwiera się w nowej karcie
  36. J.J. de Hartog, H. Boogaard, H. Nijland, G. Hoek, Do the health benefits of cycling outweigh the risks? Environ. Health Perspect. 118 (2010) 1109-1116, https://doi. org/10.1289/ehp.0901747. otwiera się w nowej karcie
  37. A.J. Carlisle, N.C.C. Sharp, Exercise and outdoor ambient air pollution, Br. J. Sports Med. 35 (2001) 214-222, https://doi.org/10.1136/bjsm.35.4.214. otwiera się w nowej karcie
  38. Departement Omgeving, Databank Ondergrond Vlaanderen [in Flemish], 2019. www.dov.vlaanderen.be/.
  39. Head Office of Geodesy and Cartography, General Geographic Database [in Polish], 2019. http://www.gugik.gov.pl/strona-glowna. otwiera się w nowej karcie
  40. Windfinder. www.windfinder.com, 2019. otwiera się w nowej karcie
  41. Armaag Foundation, [in polish]. http://armaag.gda.pl/en/index.htm, 2018. otwiera się w nowej karcie
  42. J. Lelieveld, J.S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature 525 (2015) 367-371, https://doi.org/10.1038/nature15371. otwiera się w nowej karcie
  43. S. Janssen, W. Lefebvre, C. Mensink, B. Degraeuwe, The multi-scale character of air pollution: impact of local measures in relation to European and regional policies -a case study in Antwerp, Belgium, Int. J. Environ. Pollut. 54 (2014) 203, https://doi. org/10.1504/IJEP.2014.065121. otwiera się w nowej karcie
  44. Ircel-Celine, VITO, Air Pollution High Resolution Maps, 2017. http://www. irceline.be/en/air-quality/measurements.
  45. VITO, ATMO-Street, Mapping Air Quality to Street Level, 2019. https://vito. be/en/atmo-street.
  46. Sejmik of Pomorskie Voivodeship, The Update of the Programme of Air Quality Protection for the Tri-city Agglomaration Zone in Which the Maximum Level of PM10 and the Target Level of Benzo(a)pyrene Was Exceeded [in Polish], 2017. htt ps://armaag.gda.pl/files/208/49/74_pop_strona.pdf.
  47. M. Paciorek, Tri-City air quality assessment driven by SECA regulation, results of 2014 and 2016 local model calculation, Ekometria Environmental Studies and Monitoring Centre, 2018. https://static1.squarespace.com/static/56a0c84dfb3 6b1be19213613/t/5ba8df81eef1a16551ba3af7/1537793941379/Paciorek% 2BEKOMETRIA.pdf.
  48. M.O.P. Ramacher, M. Karl, Population exposure to emissions from ships and residential heating in the urban area of Gdansk-Gdynia, in: SHEBA Sustainable Shipping and Environment of the Baltic Sea region, Helmholtz-Zentrum Geesthacht, 2017. http://shipping-and-the-environment-2017.ivl.se/download/18 .1369484715f59ce4bab1d67/1512051096965/Ramacher_AP08.pdf. otwiera się w nowej karcie
  49. The City of Antwerp, Geospatial Data -Antwerp [in Flemish], 2019. http://portaa l-stadantwerpen.opendata.arcgis.com/. otwiera się w nowej karcie
  50. Gda� nsk City Portal, Find Cycling Routes in the City. Collect New Cycling Map of Gda� nsk [in Polish], 2016. https://www.gdansk.pl/wiadomosci/znajdz-drogi- rowerowe-w-miescie-odbierz-nowa-mape-rowerowa-gdanska,a,59317. otwiera się w nowej karcie
  51. D.A. Smith, Polycentricity and Sustainable Urban Form. An Intra-urban Study of Accessibility, Employment and Travel Sustainability for the Strategic Planning of the London Region, Doctor of Philosophy Doctoral Thesis, Univ. Coll. London, 2011.
  52. S. Freire, K. MacManus, M. Pesaresi, E. Doxsey-Whitfield, J. Mills, Development of New Open and Free Multi-temporal Global Population Grids at 250 m Resolution, in: Proceedings of the 19th AGILE Conference on Geographic Information Science, 2016. June 14-17, Helsinki. otwiera się w nowej karcie
  53. Department of Environment in Flanders, Expert Assignment on Street Clusters of Water, Sound, Air, Heat and Energy [in Flemish], Departement Omgeving, 2018. https://archief.onderzoek.omgeving.vlaanderen.be/Onderzoek-2089208. otwiera się w nowej karcie
  54. J. Liu, M. Heidarinejad, S. Gracik, J. Srebric, The impact of exterior surface convective heat transfer coefficients on the building energy consumption in urban neighborhoods with different plan area densities, Energy Build. 86 (2015) 449-463, https://doi.org/10.1016/j.enbuild.2014.10.062. otwiera się w nowej karcie
  55. W. Wang, E. Ng, C. Yuan, S. Raasch, Large-eddy simulations of ventilation for thermal comfort -a parametric study of generic urban configurations with perpendicular approaching winds, Urban Clim 20 (2017) 202-227, https://doi. org/10.1016/j.uclim.2017.04.007. otwiera się w nowej karcie
  56. J. Hang, Y. Li, M. Sandberg, R. Buccolieri, S. Di Sabatino, The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas, Build. Environ. 56 (2012) 346-360, https://doi.org/ 10.1016/j.buildenv.2012.03.023. otwiera się w nowej karcie
  57. Y. Zheng, C. Ren, Y. Xu, R. Wang, J. Ho, K. Lau, E. Ng, GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong, Urban Clim 24 (2018) 419-448, https://doi.org/10.1016/j.uclim.2017.05.008. otwiera się w nowej karcie
  58. B. Yu, H. Liu, J. Wu, Y. Hu, L. Zhang, Automated derivation of urban building density information using airborne LiDAR data and object-based method, Landsc. Urban Plann. 98 (2010) 210-219, https://doi.org/10.1016/j. landurbplan.2010.08.004. otwiera się w nowej karcie
  59. A.G. McDonald, W.J. Bealey, D. Fowler, U. Dragosits, U. Skiba, R.I. Smith, R. G. Donovan, H.E. Brett, C.N. Hewitt, E. Nemitz, Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations, Atmos. Environ. 41 (2007) 8455-8467, https://doi.org/10.1016/j. atmosenv.2007.07.025. otwiera się w nowej karcie
  60. M. Tallis, G. Taylor, D. Sinnett, P. Freer-Smith, Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments, Landsc. Urban Plann. 103 (2011) 129-138, https://doi.org/10.1016/j.landurbplan.2011.07.003. otwiera się w nowej karcie
  61. S. Willems, Bicycle Paths and Routes in Flanders: Analysis of Current Design Practice [in Flemish], Master's Thesis, Univ. Ghent, 2015. otwiera się w nowej karcie
  62. S.A.H. Zahabi, A. Chang, L.F. Miranda-Moreno, Z. Patterson, Exploring the link between the neighborhood typologies, bicycle infrastructure and commuting cycling over time and the potential impact on commuter GHG emissions, Transport. Res. Transport Environ. 47 (2016) 89-103, https://doi.org/10.1016/j. trd.2016.05.008. otwiera się w nowej karcie
  63. J.E. Schoner, D.M. Levinson, The missing link: bicycle infrastructure networks and ridership in 74 US cities, Transportation 41 (2014) 1187-1204, https://doi.org/ 10.1007/s11116-014-9538-1. otwiera się w nowej karcie
  64. J. Hang, Y. Li, M. Sandberg, Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy, J. Wind Eng. Ind. Aerod. 99 (2011) 1036-1055, https://doi.org/10.1016/j. jweia.2011.07.004. otwiera się w nowej karcie
  65. M. Lin, J. Hang, Y. Li, Z. Luo, M. Sandberg, Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density, Build. Environ. 79 (2014) 152-167, https://doi.org/10.1016/j. buildenv.2014.05.008. otwiera się w nowej karcie
  66. M. Llaguno-Munitxa, E. Bou-Zeid, M. Hultmark, The influence of building geometry on street canyon air flow: validation of large eddy simulations against wind tunnel experiments, J. Wind Eng. Ind. Aerod. 165 (2017) 115-130, https:// doi.org/10.1016/j.jweia.2017.03.007. otwiera się w nowej karcie
  67. Y.H. Juan, A.S. Yang, C.Y. Wen, Y.T. Lee, P.C. Wang, Optimization procedures for enhancement of city breathability using arcade design in a realistic high-rise urban area, Build. Environ. 121 (2017) 247-261, https://doi.org/10.1016/j. buildenv.2017.05.035. otwiera się w nowej karcie
  68. C.Y. Wen, Y.H. Juan, A.S. Yang, Enhancement of city breathability with half open spaces in ideal urban street canyons, Build. Environ. 112 (2017) 322-336, https:// doi.org/10.1016/j.buildenv.2016.11.048. otwiera się w nowej karcie
  69. H. Feng, K. Hewage, Lifecycle assessment of living walls: air purification and energy performance, J. Clean. Prod. 69 (2014) 91-99, https://doi.org/10.1016/j. jclepro.2014.01.041. otwiera się w nowej karcie
  70. R. Kessler, Green walls could cut street-canyon air pollution, Environ. Health Perspect. 121 (2013), https://doi.org/10.1289/ehp.121-a14, 2013. otwiera się w nowej karcie
  71. J. Yang, Q. Yu, P. Gong, Quantifying air pollution removal by green roofs in Chicago, Atmos. Environ. Times 42 (2008) 7266-7273, https://doi.org/10.1016/j. atmosenv.2008.07.003. otwiera się w nowej karcie
  72. C. Ren, R. Yang, C. Cheng, P. Xing, X. Fang, S. Zhang, H. Wang, Y. Shi, X. Zhang, Y. T. Kwok, E. Ng, Creating breathing cities by adopting urban ventilation assessment and wind corridor plan -the implementation in Chinese cities, J. Wind Eng. Ind. Aerod. 182 (2018) 170-188, https://doi.org/10.1016/j.jweia.2018.09.023. otwiera się w nowej karcie
  73. M.S. Wong, J. Nichol, E. Ng, A study of the " wall effect" caused by proliferation of high-rise buildings using GIS techniques, Landsc. Urban Plann. 102 (2011) 245-253, https://doi.org/10.1016/j.landurbplan.2011.05.003. otwiera się w nowej karcie
  74. C.M. Hsieh, H.C. Huang, Mitigating urban heat islands: a method to identify potential wind corridor for cooling and ventilation, Comput. Environ. Urban Syst. 57 (2016) 130-143, https://doi.org/10.1016/j.compenvurbsys.2016.02.005. otwiera się w nowej karcie
  75. S. Chang, Q. Jiang, Y. Zhao, Integrating CFD and GIS into the development of urban ventilation corridors: a case study in changchun city, China, Sustainability 10 (2018) 1814, https://doi.org/10.3390/su10061814. otwiera się w nowej karcie
  76. F. Guo, H. Zhang, Y. Fan, P. Zhu, S. Wang, X. Lu, Y. Jin, Detection and evaluation of a ventilation path in a mountainous city for a sea breeze: the case of Dalian, Build. Environ. 145 (2018) 177-195, https://doi.org/10.1016/j.buildenv.2018.09.010. otwiera się w nowej karcie
  77. J. Van den Bossche, J. Peters, J. Verwaeren, D. Botteldooren, J. Theunis, B. De Baets, Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset, Atmos. Environ. 105 (2015) 148-161, https://doi.org/10.1016/j. atmosenv.2015.01.017. otwiera się w nowej karcie
  78. J. Van den Bossche, J. Theunis, B. Elen, J. Peters, D. Botteldooren, B. De Baets, Opportunistic mobile air pollution monitoring: a case study with city wardens in Antwerp, Atmos. Environ. 141 (2016) 408-421, https://doi.org/10.1016/j. atmosenv.2016.06.063. otwiera się w nowej karcie
  79. S. Steinle, S. Reis, C.E. Sabel, Quantifying human exposure to air pollution-Moving from static monitoring to spatio-temporally resolved personal exposure assessment, Sci. Total Environ. 443 (2013) 184-193, https://doi.org/10.1016/j. scitotenv.2012.10.098. otwiera się w nowej karcie
  80. R.X. Lee, S.K. Jusuf, N.H. Wong, The study of height variation on outdoor ventilation for Singapore's high-rise residential housing estates, Int. J. Low Carbon Technol. 10 (2015) 15-33, https://doi.org/10.1093/ijlct/ctt013. otwiera się w nowej karcie
  81. C. Ortolani, M. Vitale, The importance of local scale for assessing, monitoring and predicting of air quality in urban areas, Sustain. Cities Soc. 26 (2016) 150-160, https://doi.org/10.1016/j.scs.2016.06.001. otwiera się w nowej karcie
  82. Y. Luo, J. He, Y. He, A rule-based city modeling method for supporting district protective planning, Sustain. Cities Soc. 28 (2017) 277-286, https://doi.org/ 10.1016/j.scs.2016.10.003. otwiera się w nowej karcie
  83. HERE Technologies, Urban Mobility Index City Data, 2019. https://urbanmobilityi ndex.here.com/. otwiera się w nowej karcie
  84. B. Bechtel, P.J. Alexander, C. Beck, J. B€ ohner, O. Brousse, J. Ching, M. Demuzere, C. Fonte, T. G� al, J. Hidalgo, P. Hoffmann, A. Middel, G. Mills, C. Ren, L. See, P. Sismanidis, M.L. Verdonck, G. Xu, Y. Xu, Generating WUDAPT Level 0 data - current status of production and evaluation, Urban Clim 27 (2019) 24-45, https:// doi.org/10.1016/j.uclim.2018.10.001. otwiera się w nowej karcie
  85. Stad Antwerpen, OVAM, Departement Omgeving, Havenbedrijf Antwerpen NV, Team Vlaams Bouwmeester, Metabolism of Antwerp: the city of flows. Final report [in Flemish], 2018. https://issuu.com/fabrications/docs/metabolisme-van-antwer pen-stad-van-. otwiera się w nowej karcie
  86. Antwerpen Stad, RUP Nieuw Zuid, Toelichtingsnota [in Flemish], 2014. https:// www.antwerpen.be/docs/Stad/Stadsvernieuwing/Bestemmingsplannen/R UP_11002_214_10014_00001/RUP_11002_214_10014_00001_0006ONTWIKKELI otwiera się w nowej karcie
  87. NGSVIS_tn.html. otwiera się w nowej karcie
  88. Arcadis, Plan-MER, Masterplan Nieuw Zuide Te Antwerpen [in Flemish], 2013. https://mer.lne.be/merdatabank/uploads/merntech2924.pdf. otwiera się w nowej karcie
Źródła finansowania:
  • Działalność statutowa/subwencja
  • Flemish Government and the University of Antwerp, Belgium, Doctoral project ID: 37035
Weryfikacja:
Politechnika Gdańska

wyświetlono 411 razy

Publikacje, które mogą cię zainteresować

Meta Tagi