A method of predicting the best conditions for large-size workpiece clamping to reduce vibration in the face milling process - Publikacja - MOST Wiedzy

Wyszukiwarka

A method of predicting the best conditions for large-size workpiece clamping to reduce vibration in the face milling process

Abstrakt

The paper presents an innovative method of solving the problem of vibration suppression during milling of large-size details. It consists in searching for the best conditions for clamping the workpiece based on a rapid modal identification of the dominant natural frequencies only and requires repetitive changes in the tightening torque of the clamping screws. Then, by estimating the minimum work of the cutting forces acting in the direction of the width of the cutting layer, it is possible to predict the best fixing of the workpiece. Application of the method does not require the creation and identification of a computational model of the process or preliminary numerical simulations. The effectiveness of this method was confirmed by the evaluation of the Root Mean Square (RMS) of the vibration level in the time domain observed during the actual face milling process. The worst results were obtained for the configuration of supports tightened with a torque of 90–110 Nm, and the best—with a torque of 50 Nm.

Cytowania

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Scientific Reports nr 11,
ISSN: 2045-2322
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Kaliński K., Stawicka-Morawska N., Galewski M., Mazur M.: A method of predicting the best conditions for large-size workpiece clamping to reduce vibration in the face milling process// Scientific Reports -Vol. 11,iss. 1 (2021), s.20773-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-021-00128-6
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 184 razy

Publikacje, które mogą cię zainteresować

Meta Tagi