Acceleration of the Discrete Green’s Function Formulation of the FDTD Method Based on Recurrence Schemes - Publikacja - MOST Wiedzy

Wyszukiwarka

Acceleration of the Discrete Green’s Function Formulation of the FDTD Method Based on Recurrence Schemes

Abstrakt

In this paper, we investigate an acceleration of the discrete Green's function (DGF) formulation of the FDTD method (DGF-FDTD) with the use of recurrence schemes. The DGF-FDTD method allows one to compute FDTD solutions as a convolution of the excitation with the DGF kernel. Hence, it does not require to execute a leapfrog time-stepping scheme in a whole computational domain for this purpose. Until recently, the DGF generation has been the limiting step of DGF-FDTD due to large computational resources, in terms of processor time and memory, required for these computations. Hence, we have derived the no-neighbours recurrence scheme for one-dimensional FDTD-compatible DGF using solely properties of the Gauss hypergeometric function (GHF). Using known properties of GHF, the recurrence scheme is obtained for arbitrary stable time-step size. In this paper, we show that using the recurrence scheme, computations of 1-D FDTD solutions with the use of the DGF-FDTD method can be around an order of magnitude faster than those based on the direct FDTD method. Although 2- and 3-D recurrence schemes for DGF (valid not only for the magic time-step size) still need to be derived, the 1-D case remains the starting point for any research in this area.

Cytuj jako

Pełna treść

pobierz publikację
pobrano 16 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2019, IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Gulgowski J., Stefański T.: Acceleration of the Discrete Green’s Function Formulation of the FDTD Method Based on Recurrence Schemes// / : , 2019,
Bibliografia: test
  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method , 3rd edition, Artech House, Boston, 2005. otwiera się w nowej karcie
  2. J. Vazquez, C. G. Parini, "Discrete Green's function formulation of FDTD method for electromagnetic modelling," Electron. Lett., vol. 35, no. 7, pp. 554-555, 1999. otwiera się w nowej karcie
  3. W. Ma, M. R. Rayner, C. G. Parini, "Discrete Green's function formu- lation of the FDTD method and its application in antenna modeling," IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 339-346, 2005. otwiera się w nowej karcie
  4. R. Holtzman, R. Kastner, E. Heyman, and R. W. Ziolkowski, "Stability analysis of the Green's function method (GFM) used as an ABC for arbitrarily shaped boundaries," IEEE Trans. Antennas Propag., vol. 50, no. 7, pp. 1017-1029, 2002. otwiera się w nowej karcie
  5. R. Kastner, "A multidimensional Z-transform evaluation of the discrete finite difference time domain Green's function," IEEE Trans. Antennas Propag., vol. 54, no. 4, pp. 1215-1222, 2006. otwiera się w nowej karcie
  6. N. Rospsha, R. Kastner, "Closed form FDTD-compatible Green's func- tion based on combinatorics," J. Computat. Phys., vol. 226, no. 1, pp. 798-817, 2007. otwiera się w nowej karcie
  7. S.-K. Jeng, "An analytical expression for 3-D dyadic FDTD-compatible Green's function in infinite free space via Z-transform and partial difference operators," IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1347-1355, 2011. otwiera się w nowej karcie
  8. T. P. Stefański, "A new expression for the 3-D dyadic FDTD-compatible Green's function based on multidimensional Z-transform," IEEE Anten- nas Wirel. Propag. Lett., vol. 14, pp. 1002-1005, 2015. otwiera się w nowej karcie
  9. T. P. Stefański, "Discrete Green's function approach to disjoint domain simulations in 3D FDTD method," Electron. Lett., vol. 49, no. 9, pp. 597-598, 2013. otwiera się w nowej karcie
  10. T. P. Stefański, "Hybrid technique combining the FDTD method and its convolution formulation based on the discrete Green's function," IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 1448-1451, 2013. otwiera się w nowej karcie
  11. T. P. Stefański, "Electromagnetic problems requiring high-precision computations," IEEE Antennas Propag. Mag., vol. 55, no. 2, pp. 344- 353, 2013. otwiera się w nowej karcie
  12. B. P. de Hon, J. M. Arnold, "Recursive evaluation of space-time lattice Green's functions," J. Phys. A: Math. Theor., vol. 45, 385202, 2012. otwiera się w nowej karcie
  13. B. P. de Hon, S. J. Floris, J. M. Arnold, "No-neighbours recurrence schemes for space-time Green's functions on a 3D simple cubic lattice," J. Phys. A: Math. Theor., vol. 51, 085201, 2018. otwiera się w nowej karcie
  14. M. S. Min, C. H. Teng, "The instability of the Yee scheme for the "magic time step"," J. Computat. Phys., vol. 166, no. 2, pp. 418-424, 2001. otwiera się w nowej karcie
  15. R. F. Remis, "On the stability of the finite-difference time-domain method," J. Computat. Phys., vol. 163, no. 1, pp. 249-261, 2000. otwiera się w nowej karcie
  16. J. Gulgowski, T. P. Stefański, "Recurrence scheme for FDTD-compatible discrete Green's function derived based on properties of Gauss hyperge- ometric function," Journal of Electromagnetic Waves and Applications, pp. 1-17, DOI 10.1080/09205071.2019.1568308, 2019. otwiera się w nowej karcie
  17. W. Koepf, Hypergeometric Summation , Springer-Verlag, London, 2014. otwiera się w nowej karcie
  18. H. Bateman, Higher Transcendental Functions Vol. I-III., McGraw-Hill Book Company, New York, 1953.
  19. R. Vidunas, "Contiguous relations of hypergeometric series," J. Comp. Appl. Math. , vol. 153, pp. 507-519, 2003. otwiera się w nowej karcie
  20. A. K. Ibrahim, M. A. Rakha, "Contiguous relations and their compu- tations for 2 F 1 hypergeometric series," Comput. Math. Appl. , vol. 56, pp. 1918-1926, 2008.
Weryfikacja:
Politechnika Gdańska

wyświetlono 75 razy

Publikacje, które mogą cię zainteresować

Meta Tagi