Alternative methods for dark fermentation course analysis - Publikacja - MOST Wiedzy

Wyszukiwarka

Alternative methods for dark fermentation course analysis

Abstrakt

Dark fermentation course analysis is crucial, as complexed matrix of gaseous components may be formed and revealed during the process. The paper considers key issues related to the microbiological process in which complex organic substances are transformed into hydrogen. For the purposes of hydrogen generation, the application of wastewater mixed sludge pre-treated according to Faloye method (Faloye et al. in Int J Hydrog Energy 38:11765–11773, 2013. https://doi.org/10.1016/j.ijhyd ene.2013.06.129; Int J Hydrog Energy 39:5607–5616, 2014. https ://doi.org/10.1016/j.ijhydene.2014.01.163) was applied. The main risk of by-product formation is related to the presence of methanogens, i.e., Archea, in the sludge. The application of gaseous chromatography confirmed the presence of hydrogen during the initial, lag and log phases of the culture and methane in the late logarithmic death phase of the culture. However, other fermen-tation gaseous products’ presence was not confirmed, as their concentration was under the limit of detection. Therefore, a revision regarding the application of matrix sensors was proposed, and the levels of gases able to be measured using both gas chromatography and matrix sensors were conducted. The criteria of matrix sensors’ selection should include the selectivity not only for the hydrogen, hydrogen sulfide or methane, but also the sensitivity to the response of other gases contained in the mixture—ammonium, carbon dioxide and oxygen. A comprehensive combination of commer-cially available sensors and their applicability for the purposes of dark fermentation course analysis was presented on the basis of the levels of gas concentrations in the generated gas mixture.

Cytowania

  • 2

    CrossRef

  • 1

    Web of Science

  • 0

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Opublikowano w:
SN Applied Sciences nr 469, strony 1 - 8,
ISSN: 2523-3963
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Słupek E., Kucharska K., Gębicki J.. Alternative methods for dark fermentation course analysis. SN Applied Sciences, 2019, Vol. 469, iss. 1, s.1-8
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s42452-019-0488-2
Bibliografia: test
  1. Faloye FD, Kana EBG, Schmidt S (2013) Optimization of hybrid inoculum development techniques for biohydrogen production and preliminary scale up. Int J Hydrog Energy 38:11765-11773. https ://doi.org/10.1016/j.ijhyd ene.2013.06.129 otwiera się w nowej karcie
  2. Faloye FD, Kana EBG, Schmidt S (2014) Optimization of biohy- drogen inoculum development via a hybrid pH and microwave treatment technique-semi pilot scale production assessment. otwiera się w nowej karcie
  3. Int J Hydrog Energy 39:5607-5616. https ://doi.org/10.1016/j. ijhyd ene.2014.01.163 otwiera się w nowej karcie
  4. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL et al (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-prod- ucts. Appl Energy 144:73-95. https ://doi.org/10.1016/j.apene rgy.2015.01.045 otwiera się w nowej karcie
  5. Sveinsdottir M, Beck SR, Orlygsson J (2009) Ethanol produc- tion from monosugars and lignocellulosic biomass by thermo- philic bacteria isolated from Icelandic hot springs. Icel Agric Sci 22:45-58
  6. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przy- jazny A et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665-694. https ://doi.org/10.1016/J.RSER.2018.04.043 otwiera się w nowej karcie
  7. Kucharska K, Hołowacz I, Konopacka-Łyskawa D, Rybarczyk P, Kami M (2018) Key issues in modeling and optimization of ligno- cellulosic biomass fermentative conversion to gaseous biofuels. Renew Energy. https ://doi.org/10.1016/j.renen e.2018.06.018 otwiera się w nowej karcie
  8. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:2937. https ://doi.org/10.3390/molec ules2 31129 37 otwiera się w nowej karcie
  9. Kucharska K, Hołowacz I, Konopacka-Łyskawa D, Rybarczyk P, Kamiński M (2018) Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renew Energy 129:384-408. https ://doi.org/10.1016/j. renen e.2018.06.018 otwiera się w nowej karcie
  10. Kabir MM, Rajendran K, Taherzadeh MJ, Horváth IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201-208. https ://doi.org/10.1016/j. biort ech.2014.07.064 otwiera się w nowej karcie
  11. Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:4-8 otwiera się w nowej karcie
  12. Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energy 36:7460-7478. https ://doi.org/10.1016/j.ijhyd ene.2011.03.077 otwiera się w nowej karcie
  13. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569-582. https ://doi.org/10.1016/j.enzmi ctec.2005.09.015 otwiera się w nowej karcie
  14. Momirlan M, Veziroglu T (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141-179. https ://doi. org/10.1016/S1364 -0321(02)00004 -7 otwiera się w nowej karcie
  15. Pääkkönen A, Tolvanen H, Rintala J (2018) Techno-economic analysis of a power to biogas system operated based on fluc- tuating electricity price. Renew Energy 117:166-174. https :// doi.org/10.1016/j.renen e.2017.10.031 otwiera się w nowej karcie
  16. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jer- emiasse AW et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630-8640. https ://doi.org/10.1021/es801 553z otwiera się w nowej karcie
  17. Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two- stage fermentation process for the production of hydrogen. otwiera się w nowej karcie
  18. Int J Hydrog Energy 33:1195-1203. https ://doi.org/10.1016/j. ijhyd ene.2007.12.011 otwiera się w nowej karcie
  19. Oztekin R, Kapdan IK, Kargi F, Argun H (2008) Optimization of media composition for hydrogen gas production from hydro- lyzed wheat starch by dark fermentation. Int J Hydrog Energy 33:4083-4090. https ://doi.org/10.1016/j.ijhyd ene.2008.05.052 otwiera się w nowej karcie
  20. Ren NQ, Chua H, Chan SY, Tsang YF, Wang YJ, Sin N (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Biore- sour Technol 98:1774-1780. https ://doi.org/10.1016/j.biort ech.2006.07.026 otwiera się w nowej karcie
  21. Uyeda K, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidore- ductase. IV. Studies on the reaction mechanism. J Biol Chem 246:3120-3125
  22. Chong PS, Jahim JM, Harun S, Lim SS, Mutalib SA, Hassan O et al (2013) Enhancement of batch biohydrogen produc- tion from prehydrolysate of acid treated oil palm empty fruit bunch. Int J Hydrog Energy 38:9592-9599. https ://doi. org/10.1016/j.ijhyd ene.2013.01.154 otwiera się w nowej karcie
  23. Yang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohy- drogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. otwiera się w nowej karcie
  24. Int J Hydrog Energy 32:4761-4771. https ://doi.org/10.1016/j. ijhyd ene.2007.07.038 otwiera się w nowej karcie
  25. Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreat- ment methods on anaerobic mixed microflora to enhance bio- hydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99:59-67. https ://doi.org/10.1016/j.biort ech.2006.12.004 otwiera się w nowej karcie
  26. Favaro L, Alibardi L, Lavagnolo MC, Casella S, Basaglia M (2013) Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int J Hydrog Energy 38:11774-11779. https ://doi. org/10.1016/j.ijhyd ene.2013.06.137 otwiera się w nowej karcie
  27. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by meso- philic microflora: principles and progress. Int J Hydrog Energy 32:172-184. https ://doi.org/10.1016/j.ijhyd ene.2006.08.014 otwiera się w nowej karcie
  28. Łukajtis R, Rybarczyk P, Kucharska K, Konopacka-Łyskawa D, Słupek E, Wychodnik K et al (2018) Optimization of sacchari- fication conditions of lignocellulosic biomass under alkaline pre-treatment and enzymatic hydrolysis. Energies. https ://doi. org/10.3390/en110 40886 otwiera się w nowej karcie
  29. Łukajtis R, Kucharska K, Hołowacz I, Rybarczyk P, Wychodnik K, Słupek E et al (2018) Comparison and optimization of sac- charification conditions of alkaline pre-treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermen- tation. Energies 11:639. https ://doi.org/10.3390/en110 30639 otwiera się w nowej karcie
  30. Grzelka A, Sówka I, Miller U (2018) Metody oceny emisji odorów z obiektów gospodarki hodowlanej. Inżynieria Eko- logiczna 19:56-64 otwiera się w nowej karcie
  31. Sówka I (2011) Methods of identification of odour gases emit- ted from industrial plants. Prace Naukowe Instytutu Inżynierii Ochrony Środowiska Politechniki Wrocławskiej. Monografie vol 90, nr 55
  32. Gebicki J, Dymerski T (2016) Application of chemical sensors and sensor matrixes to air quality evaluation, vol 73. Elsevier, New York. https ://doi.org/10.1016/bs.coac.2016.02.007 otwiera się w nowej karcie
  33. Gebicki J (2016) Trends in analytical chemistry application of electrochemical sensors and sensor matrixes for measurement of odorous chemical compounds. Trends Anal Chem 77:1-13. https ://doi.org/10.1016/j.trac.2015.10.005 otwiera się w nowej karcie
  34. Kucharska K, Łukajtis R, Słupek E, Cieśliński H, Rybarczyk P, Kamiński M (2018) Hydrogen production from energy poplar preceded by MEA pre-treatment and enzymatic hydrolysis. Molecules 23:1-21. https ://doi.org/10.3390/molec ules2 31130 29 otwiera się w nowej karcie
  35. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A et al (2018) Corrigendum to "Hydrogen produc- tion from biomass using dark fermentation" [Renew Sustain Energy Rev 91 (2018) 665-94]. Renew Sustain Energy Rev. https ://doi.org/10.1016/j.rser.2018.06.030 otwiera się w nowej karcie
  36. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocel- lulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35-53. https ://doi.org/10.1016/j. pecs.2014.01.001 otwiera się w nowej karcie
  37. Khaleb N, Jahim J, Kamal S (2012) Biohydrogen production using hydrolysates of palm oil mill effluent (POME). J Asian Sci 2:705-710
  38. Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW (2015) Direct deg- radation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Tech- nol 192:60-67. https ://doi.org/10.1016/j.biort ech.2015.05.034 otwiera się w nowej karcie
  39. Zhu H, Béland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested waste- water sludge. Int J Hydrog Energy 31:1980-1988. https ://doi. org/10.1016/j.ijhyd ene.2006.01.019 otwiera się w nowej karcie
  40. Qin Y, Zhang F, Chen Y, Zhou Y, Li J, Zhu A et al (2012) Hierar- chically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J Phys Chem C 116:11994-12000. https ://doi.org/10.1021/jp212 029n otwiera się w nowej karcie
  41. Bejaoui A, Guerin J, Zapien JA, Aguir K (2014) Theoretical and experimental study of the response of CuO gas sensor under ozone. Sens Actuators B Chem 190:8-15. https ://doi. org/10.1016/J.SNB.2013.06.084 otwiera się w nowej karcie
  42. Isobe K, Koba K, Ueda S, Senoo K, Harayama S, Suwa Y (2011) A simple and rapid GC/MS method for the simultaneous determination of gaseous metabolites. J Microbiol Methods 84:46-51. https ://doi.org/10.1016/j.mimet .2010.10.009 otwiera się w nowej karcie
  43. Song C, Liu Q, Ji N, Deng S, Zhao J, Kitamura Y (2017) Natu- ral gas purification by heat pump assisted MEA absorption process. Appl Energy 204:353-361. https ://doi.org/10.1016/j. apene rgy.2017.07.052 otwiera się w nowej karcie
  44. Yang M, Zhang W, Rosentrater K (2017) Anhydrous ammo- nia pretreatment of corn stover and enzymatic hydrolysis of glucan from pretreated corn stover. Fermentation 3:9. https ://doi.org/10.3390/ferme ntati on301 0009 otwiera się w nowej karcie
  45. Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J (2010) Ball mill- ing pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 162:1872-1880. https ://doi.org/10.1007/s1201 0-010-8965-5 otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 86 razy

Publikacje, które mogą cię zainteresować

Meta Tagi