An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
Abstrakt
A problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and gradient descent methods. In the presented research an artificial neural network of recurrent type has been used, whose architecture has been selected in an optimised way based on the above-mentioned algorithms. The optimality has been understood as achieving a trade-off between the size of the neural network and its accuracy in capturing the response of the mathematical model under which it has been learnt. During the optimisation, original specialised evolutionary operators have been proposed. The research involved an extended validation study based on data generated from a mathematical model of the fast processes occurring in a pressurised water nuclear reactor.
Cytowania
-
1 2
CrossRef
-
0
Web of Science
-
1 1
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.asoc.2021.108375
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
APPLIED SOFT COMPUTING
nr 116,
ISSN: 1568-4946 - Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Laddach K., Łangowski R., Rutkowski T., Puchalski B.: An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes// APPLIED SOFT COMPUTING -Vol. 116, (2022), s.108375-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.asoc.2021.108375
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 219 razy