Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process - Publikacja - MOST Wiedzy

Wyszukiwarka

Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process

Abstrakt

Dry reforming of methane (DRM) is an eco-friendly method of syngas production due to the utilization of two main greenhouse gases—methane and carbon dioxide. An industrial application of methane dry reforming requires the use of a catalyst with high activity, stability over a long time, and the ability to catalyze a reaction, leading to the needed a hydrogen/carbon monoxide ratio. Thus, the aim of the study was to investigate the effect of support and noble metal particles on catalytic activity, stability, and selectivity in the dry reforming process. Ni and Ni–Ru based catalysts were prepared via impregnation and precipitation methods on SiO2, ZrO2, Al2O3, and MgAl2O4 supports. The obtained catalysts were characterized using X-ray diffractometry (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), Brunauer–Emmett–Teller (BET) specific surface area, and elemental carbon-hydrogen-nitrogen-sulphur analysis (CHNS) techniques. The catalytic activity was investigated in the carbon dioxide reforming of a methane process at 800 ◦C. Catalysts supported on commercial Al2O3 and spinel MgAl2O4 exhibited the highest activity and stability under DRM conditions. The obtained results clearly indicate that differences in catalytic activity result from the dispersion, size of an active metal (AM), and interactions of the AM with the support. It was also found that the addition of ruthenium particles enhanced the methane conversion and shifted the H2/CO ratio to lower values.

Cytowania

  • 3 4

    CrossRef

  • 0

    Web of Science

  • 3 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 101 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Catalysts nr 9, strony 1 - 13,
ISSN: 2073-4344
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Wysocka I., Rogala A., Hupka J.: Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process// Catalysts. -Vol. 9, iss. 6 (2019), s.1-13
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/catal9060540
Bibliografia: test
  1. Arora, S.; Prasad, R. An Overview on Dry Reforming of Methane: Strategies to Reduce Carbonaceous Deactivation of Catalysts. RSC Adv. 2016, 6, 108668-108688. [CrossRef] otwiera się w nowej karcie
  2. Azizi, Z.; Rezaeimanesh, M.; Tohidian, T.; Rahimpour, M.R. Dimethyl Ether: A Review of Technologies and Production Challenges. Chem. Eng. Process. Process Intensif. 2014, 82, 150-172. [CrossRef] otwiera się w nowej karcie
  3. Rostrup-Nielsen, J.R. Production of Synthesis Gas. Catal. Today 1993, 18, 305-324. [CrossRef] otwiera się w nowej karcie
  4. Mortensen, P.M.; Dybkjaer, I. Industrial Scale Experience on Steam Reforming of CO 2 -Rich Gas. Appl. Catal. A Gen. 2015, 495, 141-151. [CrossRef] otwiera się w nowej karcie
  5. Abdullah, B.; Abd Ghani, N.A.; Vo, D.V.N. Recent Advances in Dry Reforming of Methane over Ni-Based Catalysts. J. Clean. Prod. 2017, 162, 170-185. [CrossRef] otwiera się w nowej karcie
  6. Luyben, W.L. Design and Control of the Dry Methane Reforming Process. Ind. Eng. Chem. Res. 2014, 53, 14423-14439. [CrossRef] otwiera się w nowej karcie
  7. Chein, R.Y.; Chen, Y.C.; Yu, C.T.; Chung, J.N. Thermodynamic Analysis of Dry Reforming of CH 4 with CO 2 at High Pressures. J. Nat. Gas Sci. Eng. 2015, 26, 617-629. [CrossRef] otwiera się w nowej karcie
  8. Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Shahul Hamid, M.Y. A Review on Catalyst Development for Dry Reforming of Methane to Syngas: Recent Advances. Renew. Sustain. Energy Rev. 2019, 108, 175-193. [CrossRef] otwiera się w nowej karcie
  9. Jang, W.J.; Shim, J.O.; Kim, H.M.; Yoo, S.Y.; Roh, H.S. A Review on Dry Reforming of Methane in Aspect of Catalytic Properties. Catal. Today 2018, 324, 15-26. [CrossRef] otwiera się w nowej karcie
  10. Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst Design for Dry Reforming of Methane: Analysis Review. Renew. Sustain. Energy Rev. 2018, 82, 2570-2585. [CrossRef] otwiera się w nowej karcie
  11. Xu, Y.; Lin, Q.; Liu, B.; Jiang, F.; Xu, Y.; Liu, X. A Facile Fabrication of Supported Ni/SiO 2 Catalysts for Dry Reforming of Methane with Remarkably Enhanced Catalytic Performance. Catalysts 2019, 9, 183. [CrossRef] otwiera się w nowej karcie
  12. Gangurde, L.S.; Sturm, G.S.J.; Valero-romero, M.J.; Mallada, R.; Santamaria, J.; Stankiewicz, A.; Stefanidis, G. Synthesis, Characterization, and Application of Ruthenium-Doped SrTiO 3 Perovskite Catalysts for Microwave-Assisted Methane Dry Reforming. Chem. Eng. Process. Process. Intensif. 2018, 127, 178-190. [CrossRef] otwiera się w nowej karcie
  13. Zhou, H.; Zhang, T.; Sui, Z.; Zhu, Y.A.; Han, C.; Zhu, K.; Zhou, X. A Single Source Method to Generate Ru-Ni-MgO Catalysts for Methane Dry Reforming and the Kinetic Effect of Ru on Carbon Deposition and Gasification. Appl. Catal. B Environ. 2018, 233, 143-159. [CrossRef] otwiera się w nowej karcie
  14. Jabbour, K.; El Hassan, N.; Casale, S.; Estephane, J.; El Zakhem, H. Promotional Effect of Ru on the Activity and Stability of Co/SBA-15 Catalysts in Dry Reforming of Methane. Int. J. Hydrogen Energy 2014, 39, 7780-7787. [CrossRef] otwiera się w nowej karcie
  15. Li, D.; Nakagawa, Y.; Tomishige, K. Methane Reforming to Synthesis Gas over Ni Catalysts Modified with Noble Metals. Appl. Catal. A Gen. 2011, 408, 1-24. [CrossRef] otwiera się w nowej karcie
  16. Dou, Y.; Pang, Y.; Gu, L.; Ding, Y.; Jiang, W.; Feng, X.; Ji, W.; Au, C.T. Core-Shell Structured Ru-Ni@SiO 2 : Active for Partial Oxidation of Methane with Tunable H 2 /CO Ratio. J. Energy Chem. 2018, 27, 883-889. [CrossRef] otwiera się w nowej karcie
  17. Al-Fatesh, A.S.; Arafat, Y.; Atia, H.; Ibrahim, A.A.; Ha, Q.L.M.; Schneider, M.; M-Pohl, M.; Fakeeha, A.H. CO 2 -Reforming of Methane to Produce Syngas over Co-Ni/SBA-15 Catalyst: Effect of Support Modifiers (Mg, La and Sc) on Catalytic Stability. J. CO 2 Util. 2017, 21, 395-404. [CrossRef] otwiera się w nowej karcie
  18. Rouibah, K.; Barama, A.; Benrabaa, R.; Guerrero-caballero, J.; Kane, T. Dry Reforming of Methane on Nickel-Chrome, Nickel-Cobalt and Nickel-Manganese Catalysts. Int. J. Hydrogen Energy 2017, 42, 29725-29734. [CrossRef] otwiera się w nowej karcie
  19. Yao, L.; Galvez, M.E.; Hu, C.; Da Costa, P. Synthesis Gas Production via Dry Reforming of Methane over Manganese Promoted Nickel/Cerium-Zirconium Oxide Catalyst. Ind. Eng. Chem. Res. 2018, 57, 16645-16656. [CrossRef] otwiera się w nowej karcie
  20. Liu, H.; Hadjltaief, H.B.; Benzina, M.; Gálvez, M.E.; Da Costa, P. Natural Clay Based Nickel Catalysts for Dry Reforming of Methane: On the Effect of Support Promotion (La, Al, Mn). Int. J. Hydrogen Energy 2019, 4, 246-255. [CrossRef] otwiera się w nowej karcie
  21. Das, S.; Ashok, J.; Bian, Z.; Dewangan, N.; Wai, M.H.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S. Silica-Ceria Sandwiched Ni Core-Shell Catalyst for Low Temperature Dry Reforming of Biogas: Coke Resistance and Mechanistic Insights. Appl. Catal. B Environ. 2018, 230, 220-236. [CrossRef] otwiera się w nowej karcie
  22. Kim, S.M.; Abdala, P.M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; Van Beek, W.; Comas-Vives, A.; Copéret, C.; Müller, C. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. J. Am. Chem. Soc. 2017, 139, 1937-1949. [CrossRef] otwiera się w nowej karcie
  23. Margossian, T.; Larmier, K.; Kim, S.M.; Krumeich, F.; Müller, C.; Copéret, C. Supported Bimetallic NiFe Nanoparticles through Colloid Synthesis for Improved Dry Reforming Performance. ACS Catal. 2017, 7, 6942-6948. [CrossRef] otwiera się w nowej karcie
  24. Świrk, K.; Gálvez, M.E.; Motak, M.; Grzybek, T.; Rønning, M.; Da Costa, P. Dry Reforming of Methane over Zr-and Y-Modified Ni/Mg/Al Double-Layered Hydroxides. Catal. Commun. 2018, 117, 26-32. [CrossRef] otwiera się w nowej karcie
  25. Feng, X.; Liu, J.; Zhang, P.; Zhang, Q.; Xu, L.; Zhao, L.; Song, X.; Gao, L. Highly Coke Resistant Mg-Ni/Al 2 O 3 Catalyst Prepared via a Novel Magnesiothermic Reduction for Methane Reforming Catalysis with CO 2 : The Unique Role of Al-Ni Intermetallics. Nanoscale 2019, 11, 1262-1272. [CrossRef] otwiera się w nowej karcie
  26. Nakhaei Pour, A.; Mousavi, M. Combined Reforming of Methane by Carbon Dioxide and Water: Particle Size Effect of Ni-Mg Nanoparticles. Int. J. Hydrogen Energy 2015, 40, 12985-12992. [CrossRef] otwiera się w nowej karcie
  27. Nandini, A.; Pant, K.K.; Dhingra, S.C. K-, CeO 2 -, and Mn-Promoted Ni/Al 2 O 3 Catalysts for Stable CO 2 Reforming of Methane. Appl. Catal. A Gen. 2005, 290, 166-174. [CrossRef] otwiera się w nowej karcie
  28. Bailey, K.M.; Campbell, T.K.; Falconer, J.L. Potassium Promotion of Ni/Al 2 O 3 Catalysts. Appl. Catal. 1989, 54, 159-175. otwiera się w nowej karcie
  29. Németh, M.; Srankó, D.; Károlyi, J.; Somodi, F.; Schay, Z.; Sáfrán, G.; Sajó, I.; Horváth, A. Na-Promoted Ni/ZrO 2 Dry Reforming Catalyst with High Efficiency: Details of Na 2 O-ZrO 2 -Ni Interaction Controlling Activity and Coke Formation. Catal. Sci. Technol. 2017, 7, 5386-5401. [CrossRef] otwiera się w nowej karcie
  30. Wang, Y.; Yao, L.; Wang, Y.; Wang, S.; Zhao, Q.; Mao, D.; Hu, C. Low-Temperature Catalytic CO 2 Dry Reforming of Methane on Ni-Si/ZrO 2 Catalyst. ACS Catal. 2018, 8, 6495-6506. [CrossRef] otwiera się w nowej karcie
  31. Galhenage, R.P.; Yan, H.; Tenney, S.A.; Park, N.; Henkelman, G.; Albrecht, P.; Mullins, D.R.; Chen, D.A. Understanding the Nucleation and Growth of Metals on TiO 2 : Co Compared to Au, Ni, and Pt. J. Phys. Chem. C 2013, 117, 7191-7201. [CrossRef] otwiera się w nowej karcie
  32. Zhang, R.; Xia, G.; Li, M.; Wu, Y.; Nie, H.; Li, D. Effect of Supports on the Performance of Ni-Based Catalysts in Methane Dry Reforming. J. Fuel Chem. Technol. 2015, 43, 1359-1365. [CrossRef] otwiera się w nowej karcie
  33. Zhang, X.; Zhang, Q.; Tsubaki, N.; Tan, Y.; Han, Y. Carbon Dioxide Reforming of Methane over Ni Nanoparticles Incorporated into Mesoporous Amorphous ZrO 2 Matrix. Fuel 2015, 147, 243-252. [CrossRef] otwiera się w nowej karcie
  34. Wang, F.; Xu, L.; Shi, W. Syngas Production from CO 2 Reforming with Methane over Core-Shell Ni@SiO 2 Catalysts. J. CO 2 Util. 2016, 16, 318-327. [CrossRef] otwiera się w nowej karcie
  35. Ferreira-Aparicio, P.; Rodriguez-Ramos, I.; Anderson, J.A.; Guerrero-Ruiz, A. Mechanistic Aspects of the Dry Reforming of Methane over Ruthenium Catalysts. Appl. Catal. A Gen. 2000, 202, 183-196. [CrossRef] otwiera się w nowej karcie
  36. Frontera, P.; Macario, A.; Aloise, A.; Antonucci, P.L.; Giordano, G.; Nagy, J.B. Effect of Support Surface on Methane Dry-Reforming Catalyst Preparation. Catal. Today 2013, 218-219, 18-29. [CrossRef] otwiera się w nowej karcie
  37. Wang, F.; Han, B.; Zhang, L.; Xu, L.; Yu, H.; Shi, W. CO 2 Reforming with Methane over Small-Sized Ni@SiO 2 Catalysts with Unique Features of Sintering-Free and Low Carbon. Appl. Catal. B Environ. 2018, 235, 26-35. [CrossRef] otwiera się w nowej karcie
  38. Habibi, N.; Wang, Y.; Arandiyan, H.; Rezaei, M. Effect of Substitution by Ni in MgAl 2 O 4 Spinel for Biogas Dry Reforming. Int. J. Hydrogen Energy 2017, 42, 24159-24168. [CrossRef] otwiera się w nowej karcie
  39. Zarei, M.; Meshkani, F.; Rezaei, M. Preparation of Mesoporous Nanocrystalline Ni-MgAl 2 O 4 Catalysts by Sol-Gel Combustion Method and Its Applications in Dry Reforming Reaction. Adv. Powder Technol. 2016, 27, 1963-1970. [CrossRef] otwiera się w nowej karcie
  40. Nazemi, M.K.; Sheibani, S.; Rashchi, F.; Gonzalez-Delacruz, V.M.; Caballero, A. Preparation of Nanostructured Nickel Aluminate Spinel Powder from Spent NiO/Al 2 O 3 Catalyst by Mechano-Chemical Synthesis. Adv. Powder Technol. 2012, 23, 833-838. [CrossRef] otwiera się w nowej karcie
  41. Park, J.; Yeo, S.; Chang, T. Effect of Supports on the Performance of Co-Based Catalysts in Methane Dry Reforming. J. CO 2 Util. 2018, 26, 465-475. [CrossRef] otwiera się w nowej karcie
  42. Han, J.W.; Park, J.S.; Choi, M.S.; Lee, H. Uncoupling the Size and Support Effects of Ni Catalysts for Dry Reforming of Methane. Appl. Catal. B Environ. 2017, 203, 625-632. [CrossRef] otwiera się w nowej karcie
  43. Lemonidou, A.A.; Vasalos, I.A. Carbon Dioxide Reforming of Methane Over. Appl. Catal. A Gen. 2002, 228, 227-235. otwiera się w nowej karcie
  44. Pakhare, D.; Spivey, J. A Review of Dry (CO 2 ) Reforming of Methane over Noble Metal Catalysts. Chem. Soc. Rev. 2014, 43, 7813-7837. [CrossRef] otwiera się w nowej karcie
  45. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
  • Umowa z PGNiG nr CS/JB/18/159351
Weryfikacja:
Politechnika Gdańska

wyświetlono 232 razy

Publikacje, które mogą cię zainteresować

Meta Tagi