Abstrakt
Glacial landforms, created by the continuous movements of glaciers over millennia, are crucial topics in geomorphological research. Their systematic analysis affords invaluable insights into past climatic oscillations and augments understanding of long-term climate change dynamics. The classification of these types of terrain traditionally depends on labor-intensive manual or semi-automated methods. However, the emergence of automated techniques driven by deep learning and neural networks holds promise for enhancing efficiency of terrain classification workflows. This study evaluated the effectiveness of Convolutional Neural Network (CNN) architectures, particularly Residual Neural Network (ResNet) and VGG in comparison with Vision Transformer (ViT) architecture in the glacial landform classification task. By using preprocessed input data from Digital Elevation Model (DEM) which covers regions such as the Lubawa Upland and Gardno-Leba Plain in Poland, as well as the Elise Glacier in Svalbard, Norway, comprehensive assessments of those methods were conducted. The final results highlight the unique ability of deep learning methods to accurately classify glacial landforms. Classification process presented in this study can be the efficient, repeatable and fast solution for automatic terrain classification.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
International Journal of Electronics and Telecommunications
nr 70,
strony 823 - 829,
ISSN: 2081-8491 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Nadachowski P., Łubniewski Z., Trzcińska K., Tęgowski J.: Comparison of Deep Learning Approaches in Classification of Glacial Landforms// International Journal of Electronics and Telecommunications -,iss. vol. 70, no. 4 (2024), s.823-829
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.24425/ijet.2024.152066
- Źródła finansowania:
-
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 9 razy
Publikacje, które mogą cię zainteresować
Glacial Landform Classification with Vision Transformer and Digital Elevation Model
- P. Nadachowski,
- Z. Łubniewski,
- J. Tęgowski
Classification of Glacial and Fluvioglacial Landforms by Convolutional Neural Networks Using a Digital Elevation Model
- P. Nadachowski,
- Z. Łubniewski,
- A. Malecha-Łysakowska
- + 3 autorów