Comparison of Deep Learning Approaches in Classification of Glacial Landforms - Publikacja - MOST Wiedzy

Wyszukiwarka

Comparison of Deep Learning Approaches in Classification of Glacial Landforms

Abstrakt

Glacial landforms, created by the continuous movements of glaciers over millennia, are crucial topics in geomorphological research. Their systematic analysis affords invaluable insights into past climatic oscillations and augments understanding of long-term climate change dynamics. The classification of these types of terrain traditionally depends on labor-intensive manual or semi-automated methods. However, the emergence of automated techniques driven by deep learning and neural networks holds promise for enhancing efficiency of terrain classification workflows. This study evaluated the effectiveness of Convolutional Neural Network (CNN) architectures, particularly Residual Neural Network (ResNet) and VGG in comparison with Vision Transformer (ViT) architecture in the glacial landform classification task. By using preprocessed input data from Digital Elevation Model (DEM) which covers regions such as the Lubawa Upland and Gardno-Leba Plain in Poland, as well as the Elise Glacier in Svalbard, Norway, comprehensive assessments of those methods were conducted. The final results highlight the unique ability of deep learning methods to accurately classify glacial landforms. Classification process presented in this study can be the efficient, repeatable and fast solution for automatic terrain classification.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
International Journal of Electronics and Telecommunications nr 70, strony 823 - 829,
ISSN: 2081-8491
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Nadachowski P., Łubniewski Z., Trzcińska K., Tęgowski J.: Comparison of Deep Learning Approaches in Classification of Glacial Landforms// International Journal of Electronics and Telecommunications -,iss. vol. 70, no. 4 (2024), s.823-829
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.24425/ijet.2024.152066
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 9 razy

Publikacje, które mogą cię zainteresować

Meta Tagi