Abstrakt
Composite materials have become synonymous with modernity, desired in nearly every aspect of our daily lives, from simple everyday objects to sanitary facilities, pipelines, the construction of modern sewer networks, their renovation, water supply, and storage reservoirs, to complex structures—automotive, planes, and space science. Composites have seen a considerable rise in attention owing to their characteristics, durability, strength, reduced energy usage during the manufacturing process, and decreased transportation costs. Composite materials consistently outperform steel, cast iron, and concrete in terms of CO2 emissions. Additionally, these materials have a long service life of about 150 years or more and are corrosion-resistant. Today, continued sustainable development is contingent upon access to safe drinking water and the availability of its resources and modes of conveyance. As a result, composite pipes have considerable potential due to their very low flow rate, which directly affects the prices of drinking water pumping and irrigation systems. However, there are also certain disadvantages associated with fibre-reinforced composites, such as easy surface damage, low heat resistance (up to 220 °C), long product forming time, and high cost of the material. Additionally, the product’s initial high durability and extended life cycle, coupled with high abrasion resistance, anisotropic strength, and stiffness in the final phase, prove to be unfavourable since composite material cannot be rapidly reintroduced into the manufacturing cycle. However, its disposal requires a negligible amount of energy. The article discusses the various composite materials available, their applications, and the potential for further developing their manufacturing technology toward nanocomposites and composites of natural origin that are readily biodegradable at the end of their service life; dubbed “green composites”. The study’s findings are unequivocal: this class of composite materials warrants further investigation in the future since they align perfectly with the concept of sustainable economic growth and Green Deal implementation.
Cytowania
-
1 4
CrossRef
-
0
Web of Science
-
1 7
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/pr9122238
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Processes
nr 9,
strony 2238 - 2258,
ISSN: 2227-9717 - Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Czapla A., Ganesapillai M., Drewnowski J.: Composite as a Material of the Future in the Era of Green Deal Implementation Strategies// Processes -Vol. 9,iss. 12 (2021), s.2238-2258
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/pr9122238
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 122 razy
Publikacje, które mogą cię zainteresować
Influence of CeO2 and TiO2 Particles on Physicochemical Properties of Composite Nickel Coatings Electrodeposited at Ambient Temperature
- I. Makarava,
- M. Esmaeili,
- D. Kharitonov
- + 5 autorów
Mechanical Properties of Bio-Composites Based on Epoxy Resin and Nanocellulose Fibres
- M. Roszowska-Jarosz,
- J. Masiewicz,
- M. Kostrzewa
- + 4 autorów
Highly Dissipative Materials for Damage Protection against Earthquake-Induced Structural Pounding
- A. M. Stręk,
- N. Lasowicz,
- A. Kwiecień
- + 2 autorów
Design of dimensionally stable composites using efficient global optimization method
- L. Aydin,
- O. Aydin,
- H. S. Artem
- + 1 autorów