Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching - Publikacja - MOST Wiedzy

Wyszukiwarka

Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching

Abstrakt

Finding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective optimization is necessary that leads to identifying a Pareto set. Here, a framework for fast multi-objective design of compact micro-strip couplers is discussed. We use a sequential domain patching (SDP) algorithm for numerically efficient handling of the structure bandwidth and the footprint area. Low cost of the process is ensured by executing SDP at the low-fidelity model level. Due to its bi-objective implementation, SDP cannot control the power split error of the coupler, the value of which may become unacceptably high along the initial Pareto set. Here, we propose a procedure for correction of the S-parameters’ characteristics of Pareto designs. The method exploits gradients of power split and bandwidth estimated using finite differentiation at the patch centres. The gradient data are used to correct the power split ratio while leaving the operational bandwidth of the structure at hand intact. The correction does not affect the computational cost of the design process because perturbations are pre-generated by SDP. The final Pareto set is obtained upon refining the corrected designs to the high-fidelity EM model level. The proposed technique is demonstrated using two compact microstrip rat-race couplers. Experimental validation is also provided.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Metrology and Measurement Systems nr 25, strony 139 - 157,
ISSN: 0860-8229
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kozieł S., Bekasiewicz A.: Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching// Metrology and Measurement Systems. -Vol. 25, nr. 1 (2018), s.139-157
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.24425/118166
Bibliografia: test
  1. Kurgan, P., Filipcewicz, J., Kitlinski, M. (2012). Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction. IET Microwaves, Ant. Prop., 6(12), 1291- 1298. otwiera się w nowej karcie
  2. Tseng, C.H., Chang, C.L. (2012). A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEEE Trans. Microwave Theory Tech., 60(7), 2085-2092. otwiera się w nowej karcie
  3. Salari, M.A., Manoochehri, O., Abbasiniazare, S. (2013). Miniaturized microstrip ring hybrid with defected microstrip structure. Microw. Opt. Tech. Lett., 55(10), 2245-2248. otwiera się w nowej karcie
  4. Guo, L., Wang, S., Chen, X., Parini, C.G. (2010). Study of compact antenna for UWB applications. Electronics Lett., 46(2), 115-116. otwiera się w nowej karcie
  5. Gautam, A.K., Yadav, S., Kanaujia, B.K. (2013). A CPW-fed compact UWB microstrip antenna. IEEE Ant. Wireless Prop. Lett., 12, 151-154. otwiera się w nowej karcie
  6. Xiao, S., Wang, B.Z., Shao, W., Zhang, Y. (2005). Bandwidth-enhancing ultralow-profile compact patch antenna. IEEE Trans. Ant. Prop., 53(11), 3443-3447.
  7. Ahn, H.R., Bumman, K. (2008). Toward integrated circuit size reduction. IEEE Microw. Mag., 9(1), 65-75.
  8. Sani, A., Alomainy, A., Palikaras, G., Nechayev, Y., Yang. H., Parini, C., Hall, P.S. (2010). Experi- mental characterization of UWB on-body radio channel in indoor environment considering different antennas. IEEE Trans. Ant. Prop., 58(1), 238-241. otwiera się w nowej karcie
  9. Ning, H. (2013). Unit and ubiquitous internet of things. CRC Press. otwiera się w nowej karcie
  10. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. (2015). Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376. otwiera się w nowej karcie
  11. Koziel, S., Bekasiewicz, A., Kurgan, P. (2015). Rapid multi-objective simulation-driven design of compact microwave circuits. IEEE Microwave Wireless Comp. Letters, 25(5), 277-279. otwiera się w nowej karcie
  12. Koziel, S., Bekasiewicz, A., Kurgan, P., Bandler, J.W. (2015). Rapid multi-objective design optimiza- tion of compact microwave couplers by means of physics-based surrogates. IET Microwaves, Ant. Prop., 10(5), 479-486. otwiera się w nowej karcie
  13. Liao, S.S., Sun, P.T., Chin, N.C., Peng, J.T. (2005). A novel compact-size branch-line coupler. IEEE Microw. Wireless Comp. Lett., 15(9), 588-590.
  14. Xu, H.X., Wang, G.M., Lu, K. (2011). Microstrip rat-race couplers. IEEE Microw. Mag., 12(4), 117- 129. otwiera się w nowej karcie
  15. Jung, C., Negra, R., Ghannouchi, F.M. (2008). A design methodology for miniaturized 3-dB branch- line hybrid couplers using distributed capacitors printed in the inner area. IEEE Trans. Microw. Theory Techn., 56(12), 2950-2953.
  16. Kurgan, P., Kitlinski, M. (2011). Doubly miniaturized rat-race hybrid coupler. Microwave Opt. Tech. Lett., 53(6), 1242-1244. otwiera się w nowej karcie
  17. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, H.M., Madsen, K., Søndergaard, J. (2004). Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52(1), 337-361. otwiera się w nowej karcie
  18. Koziel, S., Ogurtsov, S. (2014). Antenna design by simulation-driven optimization. Surrogate-based approach. Springer. otwiera się w nowej karcie
  19. Koziel, S., Yang, X.S., Zhang, Q.J. (eds.), (2013). Simulation-driven design optimization and modeling for microwave engineering. Imperial College Press. otwiera się w nowej karcie
  20. El Sabbagh, M.A., Bakr, M.H., Bandler, J.W. (2006). Adjoint higher order sensitivities for fast full- wave optimization of microwave filters. IEEE Trans. Microw Theory Tech., 54, 3339-3351. otwiera się w nowej karcie
  21. Bakr, M.H., Nikolova, N.K. (2004). An adjoint variable method for time-domain transmission-line modeling with fixed structured grids. IEEE Trans. Microwave Theory Tech., 52(2), 554-559. otwiera się w nowej karcie
  22. Khalatpour, A., Amineh, R.K., Cheng, Q.S., Bakr, M.H., Nikolova, N.K., Bandler, J.W. (2011). Accel- erating space mapping optimization with adjoint sensitivities. IEEE Microwave Wireless Comp. Lett., 21(6), 280-282. otwiera się w nowej karcie
  23. Bekasiewicz, A., Koziel, S. (2015). Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity. Int. J. RF Microwave CAE, 25(2), 178-183. otwiera się w nowej karcie
  24. Yeung, S.H., Man, K.F. (2011). Multiobjective optimization. IEEE Microw. Mag., 12(6), 120-133. otwiera się w nowej karcie
  25. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. NY: Wiley. otwiera się w nowej karcie
  26. Kuwahara, Y. (2005). Multiobjective Optimization Design of Yagi-Uda Antenna. IEEE Trans. Ant. Prop., 53(6), 1984-1992. otwiera się w nowej karcie
  27. Chamaani, S., Abrishamian, M.S., Mirtaheri, S.A. (2010). Time-domain design of UWB Vivaldi an- tenna array using multiobjective particle swarm optimization. IEEE Ant. Wireless Prop. Lett., 9, 666- 669. otwiera się w nowej karcie
  28. Jin, N., Rahmat-Samii, Y. (2007). Advances in particle swarm optimization for antenna designs: real- number, binary, single-objective and multiobjective implementations. IEEE Trans. Ant. Prop., 55(3), 556-567. otwiera się w nowej karcie
  29. Goudos, S.K., Zaharis, Z.D., Kampitaki, D.G., et.al. (2009). Pareto optimal design of dual-band base station antenna arrays using multi-objective particle swarm optimization with fitness sharing. IEEE Trans. on Magn., 45, 1522-1525. otwiera się w nowej karcie
  30. Koziel, S., Bekasiewicz, A., Kurgan, P. (2015). Rapid multi-objective simulation-driven design of compact microwave circuits. IEEE Microwave Wireless Comp. Lett., 25(5), 277-279. otwiera się w nowej karcie
  31. Koziel, S., Bekasiewicz, A., Zieniutycz, W. (2014). Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces. IEEE Ant. Wireless Prop. Lett., 13, 631-634. otwiera się w nowej karcie
  32. Koziel, S., Bekasiewicz, A. (2015). Fast multiobjective optimization of narrow-band antennas using RSA models and design space reduction. IEEE Ant. Wireless Prop. Lett., 14, 450-453. otwiera się w nowej karcie
  33. Koziel, S., Ogurtsov, S. (2013). Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Trans. Ant. Prop., 61(12), 5931-5939. otwiera się w nowej karcie
  34. Koziel, S., Bekasiewicz, A. (2016). Multi-objective antenna design by means of sequential domain patching. IEEE Ant. Wireless Prop. Lett., 15, 1089-1092. otwiera się w nowej karcie
  35. Bekasiewicz, A., Koziel, S., Pankiewicz, B. (2015). Accelerated simulation-driven design optimisation of compact couplers by means of two-level space mapping. IET Microwaves, Ant. Prop., 9(7), 618- 626. otwiera się w nowej karcie
  36. CST Microwave Studio, ver. 2015, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2015. otwiera się w nowej karcie
  37. Tseng, C.H., Chen, H.J. (2008). Compact rat-race coupler using shunt-stub-based artificial transmis- sion lines. IEEE Microw. Wireless Comp. Lett., 18(11), 734-736. otwiera się w nowej karcie
  38. Kotinis, M. (2010). A particle swarm optimizer for constrained multi-objective engineering design problems. Eng. Optimization, 42(10), 907-926. otwiera się w nowej karcie
  39. Al-Baity, H., Meshoul, S., Kaban, A. (2012). Constrained multi-objective optimization using a quan- tum behaved particle swarm. Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.). Int. Conf. Neural Infor- mation Processing, 456-464. otwiera się w nowej karcie
  40. Feliot, P., Bect, J., Vazquez, E. (2017). A Bayesian approach to constrained single-and multi-objective optimization. J. Global Opt., 67(1), 1-37. otwiera się w nowej karcie
  41. Martinez-Frutos, J., Herrero-Perez, D. (2016). Kriging-based infill sampling criterion for constraint handling in multi-objective optimization. J. Global Opt., 64(1), 97-115. otwiera się w nowej karcie
  42. Hussein, R., Deb, K. (2016). A generative kriging surrogate model for constrained and unconstrained multi-objective optimization. Proc. Genetic Evolutionary Comp. Conf., 573-580. otwiera się w nowej karcie
  43. Bekasiewicz, A., Koziel, S., Leifsson, L. (2016). Sequential domain patching for computationally fea- sible multi-objective optimization of expensive electromagnetic simulation models. Procedia Comp. Sci., 80, 1093-1102. otwiera się w nowej karcie
  44. Koziel, S., Bekasiewicz, A. (2016). Multi-objective optimization microwave couplers using corrected domain patching. European Microwave Conference, 1-4, London. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 82 razy

Publikacje, które mogą cię zainteresować

Meta Tagi