Deep learning techniques for biometric security: A systematic review of presentation attack detection systems - Publikacja - MOST Wiedzy

Wyszukiwarka

Deep learning techniques for biometric security: A systematic review of presentation attack detection systems

Abstrakt

Biometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with pre- sentation attacks (PAs) being prevalent and easily executed. PAs involve displaying videos, images, or full-face masks to trick biometric systems and gain unauthorized access. Many authors are currently focusing on detecting these presentation attacks (PAD) and have developed several methods, particularly those based on deep learning (DL), which have shown superior performance compared to other techniques. This survey article focuses on manuscripts related to deep learning presentation attack detection, spoof attack detection using deep learning, and anti-spoofing deep learning methods for biometric finger vein, fingerprint, iris, and face recognition. The studies were primarily sourced from four digital research libraries: ACM, Science Direct, Springer, and IEEE Xplore. The article presents a comprehensive review of DL-based PAD systems, examining recent literature on DL-based PAD methods in finger vein, fingerprint, iris, and face detection systems. Through extensive research of the literature, recent algorithms and their solutions for relevant PAD approaches are thoroughly analyzed. Additionally, the article provides a performance analysis and highlights the most promising research findings. The discussion section addresses current issues, opportunities for advancement, and potential solutions associ- ated with deep learning-based PAD methods. This study is valuable to various community users seeking to understand the significance of this technology and its recent applicability in the development of biometric technology for deep learning.

Cytowania

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE nr 129,
ISSN: 0952-1976
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Shaheed K., Szczuko P., Kumar M., Qureshi I., Abbas Q., Ullah I.: Deep learning techniques for biometric security: A systematic review of presentation attack detection systems// ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE -,iss. 129 (2023), s.107569-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.engappai.2023.107569
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 149 razy

Publikacje, które mogą cię zainteresować

Meta Tagi