Design Equation for Stirring Fluid by a Stream Pump in a Circulating Tank - Publikacja - MOST Wiedzy

Wyszukiwarka

Design Equation for Stirring Fluid by a Stream Pump in a Circulating Tank

Abstrakt

A circulating tank is a very useful theoretical scheme for many fluid-flow objects in several branches of engineering. The motion of the fluid in such objects can be induced in different ways. A stream pump provides an especially interesting possibility; however, the quantitative description of such devices shows some shortcomings. Such a device is analogous to a jet pump, thus has similar advantages (simplicity of construction, lack of movable elements, insensibility to pollutants) and disadvantages (low efficiency). On the one hand, from the technical viewpoint, one can make use of technical instructions presented in handbooks and offered by producers, and on the other hand by performing calculations using CFD tools. In this situation, it is self-evident that some intermediary method of design, i.e., formally simple, but physically convincing, would be welcome both by theoreticians and by engineers. Such a method is proposed in this paper and takes the form of an algebraic formula, combining the discharge of the stream pump and the discharge of the circulation induced by this stream. This expression, based on the balance between the power of the stream and the power of dissipation, has been experimentally verified with a positive result.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 28 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Water nr 11,
ISSN: 2073-4441
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Sawicki J., Wielgat P., Zima P.: Design Equation for Stirring Fluid by a Stream Pump in a Circulating Tank// Water -Vol. 11,iss. 10 (2019), s.2114-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/w11102114
Bibliografia: test
  1. Shah, M. Course Material Process Engineering: Agitation Mixing. Available online: http://www.dduanchor.org/ site/wp-content/uploads/2014/11/Process-Engineering-Agitation-Mixing.pdf (accessed on 13 August 2019). otwiera się w nowej karcie
  2. Demirel, E.; Aral, M.M. Unified Analysis of Multi-Chamber Contact Tanks and Mixing Efficiency Based on Vorticity Field. Part I: Hydrodynamic Analysis. Water 2016, 8, 495. [CrossRef] otwiera się w nowej karcie
  3. Maruyama, T.; Ban, Y.; Mizushina, T. Jet mixing of fluids in tanks. J. Chem. Eng. Jpn. 1982, 15, 342-348. [CrossRef] otwiera się w nowej karcie
  4. Matej, K.; Pawliczka, I.; Sawicki, J.M.; Wielgat, P.; Zima, P. Whirling System of Water Exchange in Breeding Pools. Arch. Hydro-Eng. Environ. Mech. 2016, 63, 253-263. [CrossRef] otwiera się w nowej karcie
  5. Higgins, H.W. Water Jet Air Pump Theory and Performance; Pennsylvania State University: State College, PA, USA, 1964.
  6. Wilman, J.T. Jet Pumps; European Atomic Energy Community-EURATOM Reactor Centrum Nederland-RCN: Brussels, Belgium, 1966. otwiera się w nowej karcie
  7. Zima, P.; Makinia, J.; Swinarski, M.; Czerwionka, K. Effects of different hydraulic models on predicting longitudinal profiles of reactive pollutants in activated sludge reactors. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2008, 58, 555-561. [CrossRef] [PubMed] otwiera się w nowej karcie
  8. Zima, P.; Makinia, J.; Swinarski, M.; Czerwionka, K. Combining computational fluid dynamics with a biokinetic model for predicting ammonia and phosphate behavior in aeration tanks. Water Environ. Res. Res. Publ. Water Environ. Fed. 2009, 81, 2353-2362. [CrossRef] [PubMed] otwiera się w nowej karcie
  9. Sawicki, J.M. Aerated Grit Chambers Hydraulic Design Equation. J. Environ. Eng. 2004, 130, 1050-1058. [CrossRef] otwiera się w nowej karcie
  10. Sawicki, J.M.; Pawłowska, A. Energy balance for air lift pumps. Arch. Hydro-Eng. Environ. Mech. 1999, 46, 63-72. otwiera się w nowej karcie
  11. Gronowska-Szneler, M.A.; Sawicki, J.M. Simple design criteria and efficiency of hydrodynamic vortex separators. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2014, 70, 457-463. [CrossRef] [PubMed] otwiera się w nowej karcie
  12. Mielczarek, S.; Sawicki, J.M. Dimensioning of vortex storm overflows. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2018, 78, 259-265. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Artichowicz, W.; Sawicki, J.M. Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power. Arch. Hydro-Eng. Environ. Mech. 2017, 64, 73-85. [CrossRef] otwiera się w nowej karcie
  14. Slattery, J.C. Advanced Transport Phenomena; Cambridge University Press: Cambridge, UK, 1999; ISBN 978-1-316-58390-6.
  15. Luo, C. Distribution of Velocities and Velocity Gradients in Mixing and Flocculation Vessels: Comparison between LDV Data and CFD Predictions. Ph. D. Thesis, New Jersey Institute of Technology, Newark, NJ, USA, 1997.
  16. Kasat, G.R.; Pandit, A.B. Mixing Time Studies in Multiple Impeller Agitated Reactors. Can. J. Chem. Eng. 2004, 82, 892-903. [CrossRef] otwiera się w nowej karcie
  17. Dickley, S.D. Minimize Blending Time. Available online: https://www.chemicalprocessing.com/articles/2009/ 120/ (accessed on 12 August 2019). otwiera się w nowej karcie
  18. Abramovich, G.N.; Schindel, L. The Theory of Turbulent Jets; MIT-Press: Cambridge, UK, 2003; ISBN 978-0-262-01008-5.
  19. Qiao, Q.S.; Choi, K.W.; Chan, S.N.; Lee Joseph, H.W. Internal Hydraulics of a Chlorine Jet Diffuser. J. Hydraul. Eng. 2017, 143, 06017022. [CrossRef] otwiera się w nowej karcie
  20. Das, B.S.; Khatua, K.K. Flow Resistance in a Compound Channel with Diverging and Converging Floodplains. J. Hydraul. Eng. 2018, 144, 04018051. [CrossRef] otwiera się w nowej karcie
  21. Idelchik, I.E.; Ginevskiȋ, A.S. Handbook of Hydraulic Resistance, 4th ed.; rev. and augmented.; Begell House: Redding, CT, USA, 2007; ISBN 978-1-56700-251-5. otwiera się w nowej karcie
  22. SonTek/YSI, Inc. ADVField/Hydra Acoustic Doppler Velocimeter (Field) Technical Documentation; SonTec: San Diego, CA, USA, 2001. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 105 razy

Publikacje, które mogą cię zainteresować

Meta Tagi