Abstrakt
The effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The recognition of small and overlapping objects is often very problematic. The highest valued classifiers are universal ones that help accurately detect objects of various categories. This research project compared the efficiency of detecting objects of various categories, such as airports, helicopters, planes, fuel tanks and warships, using various modern neural network architectures in the public remote-sensing dataset for geospatial object detection (RSD-GOD). The results presented in this paper are better than the results of detecting objects of the same categories in the RSD-GOD dataset produced by previous studies.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Madajczak A., Ciecholewski M.: Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks// / : , 2024,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/igarss53475.2024.10640694
- Źródła finansowania:
-
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 34 razy
Publikacje, które mogą cię zainteresować
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
- A. Stateczny,
- G. Uday Kiran,
- G. Bindu
- + 2 autorów
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
- R. K. Patra,
- S. N. Patil,
- P. Falkowski-Gilski
- + 2 autorów
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
- S. N. Shivappriya,
- M. J. P. Priyadarsini,
- A. Stateczny
- + 2 autorów
Pedestrian detection in low-resolution thermal images
- A. Górska,
- P. Guzal,
- I. Namiotko
- + 3 autorów