Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers - Publikacja - MOST Wiedzy

Wyszukiwarka

Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers

Abstrakt

It seems to be obvious that conditions changes during polyols synthesis have impact on the polyols properties. Even the chemical formula is the same or similar, physicochemical properties and also molecular weight of polyols might be different and are significant in term of future polyurethanes properties and processing. In this work, fully bio-based poly(propylene succinate)s synthesized at different temperature conditions were used as a polyol in thermoplastic polyurethane elastomers (TPU) synthesis. Novel bio-based TPUs were synthesized with the use of mentioned bio-based linear polyester polyols, poly(propylene succinate)s and also 4,4-diphenylmethane diisocyanate (MDI) and a chain extender 1,4-butanediol (BDO) or 1,3-propanediol (PDO), both with the natural origin. Influence of synthesized bio-based polyols on thermoplastic polyurethane elastomers characteristic was determined based on investigation of chemical structure, thermal, thermomechanical, mechanical and physical properties of synthesized bio-based TPU. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) were applied to the chemical formula determination. Thermogravimetry was supportive in thermal analysis, dynamic mechanical analysis (DMA), tensile test and hardness were used to determine thermomechanical behavior and mechanical properties at static and dynamic condition. The density of the obtained materials was also measured. It was established that using obtained fully bio-based polyester polyols the thermoplastic polyurethane elastomers can be synthesis without catalyst usage. Based on the results demonstrated greater influence of type of chain extender on bio-based TPU properties than condition of bio-based polyester synthesis. Each sample was characterized by glass temperature (Tg) ca. 0-5°C and similar thermal stability ca. 320°C. The tensile strength of prepared bio-based TPUs reach even 30 MPa with an elongation at break ca. 550%.

Cytowania

  • 6 9

    CrossRef

  • 0

    Web of Science

  • 7 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 128 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
EUROPEAN POLYMER JOURNAL nr 123, strony 1 - 10,
ISSN: 0014-3057
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Parcheta P., Głowińska E., Datta J.: Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers// EUROPEAN POLYMER JOURNAL -Vol. 123, (2020), s.1-10
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.eurpolymj.2019.109422
Bibliografia: test
  1. P. Parcheta, J. Datta, Environmental impact and industrial development of bior- enewable resources for polyurethanes, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1986-2016, https://doi.org/10.1080/10643389.2017.1400861. otwiera się w nowej karcie
  2. ZMR, Zion Mark. Res. (2018). https://www.zionmarketresearch.com/news/ thermoplastic-polyurethane-market.
  3. H. Sardon, A. Pascual, D. Mecerreyes, D. Taton, H. Cramail, J.L. Hedrick, Synthesis of polyurethanes using organocatalysis: A perspective, Macromolecules 48 (2015) 3153-3165, https://doi.org/10.1021/acs.macromol.5b00384. otwiera się w nowej karcie
  4. S. Niyogi, S. Sarkar, B. Adhikari, Catalytic activity of DBTDL in polyurethane for- mation, Indian J. Chem. Technol. 9 (2002) 330-333.
  5. M.A. Semsarzadeh, A.H. Navarchian, Effects of NCO/OH ratio and catalyst con- centration on structure, thermal stability, and crosslink density of poly(urethane- isocyanurate), J. Appl. Polym. Sci. 90 (2003) 963-972, https://doi.org/10.1002/ app.12691. otwiera się w nowej karcie
  6. Q. Zhang, X.M. Hu, M.Y. Wu, Y.Y. Zhao, C. Yu, Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials, J. Appl. Polym. Sci. 135 (2018) 1-11, https://doi.org/10.1002/app.46460. otwiera się w nowej karcie
  7. Y.V. Yakovlev, Z.O. Gagolkina, E.V. Lobko, I. Khalakhan, V.V. Klepko, The effect of catalyst addition on the structure, electrical and mechanical properties of the cross- linked polyurethane/carbon nanotube composites, Compos. Sci. Technol. 144 (2017) 208-214, https://doi.org/10.1016/j.compscitech.2017.03.034. otwiera się w nowej karcie
  8. A.M. Nacas, A.C. Chinellato, D.J. dos Santos, Lithium catalyst concentration influ- ence on bio-polyols structure and polyurethane adhesives properties, Rev. Mater. 24 (2019) 1-9, https://doi.org/10.1590/s1517-707620190003.0716. otwiera się w nowej karcie
  9. Y. Schellekens, B. Van Trimpont, P.J. Goelen, K. Binnemans, M. Smet, M.A. Persoons, D. De Vos, Tin-free catalysts for the production of aliphatic ther- moplastic polyurethanes, Green Chem. 16 (2014) 4401-4407, https://doi.org/10. 1039/c4gc00873a. otwiera się w nowej karcie
  10. A.M. Nacas, S.E. Vidotti, A.C. Chinellato, D.J. do. Santos, The role of polyol reaction catalysts in the cure kinetics and mechanical behavior of polyurethane adhesives, J. Adhes. 94 (2018) 880-892, https://doi.org/10.1080/00218464.2017.1380524. otwiera się w nowej karcie
  11. P. Kasprzyk, J. Datta, Effect of molar ratio [NCO]/[OH] groups during prepolymer chains extending step on the morphology and selected mechanical properties of final bio-based thermoplastic Poly (Ether-Urethane) materials, Polym. Eng. Sci. (2018), https://doi.org/10.1002/pen.24874. otwiera się w nowej karcie
  12. J. Huang, L. Zhang, Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin, Polym. (United Kingdom) 43 (2002) 2287-2294. otwiera się w nowej karcie
  13. S. Desai, I.M. Thakore, B.D. Sarawade, S. Devi, Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes, Eur. Polym. J. 36 (2000) 711-725. otwiera się w nowej karcie
  14. T. Suzuki, M. Shibayama, K. Hatano, M. Ishii, [NCO]/[OH] and acryl-polyol con- centration dependence of the gelation process and the microstructure analysis of polyurethane resin by dynamic light scattering, Polymer (Guildf). 50 (2009) 2503-2509, https://doi.org/10.1016/j.polymer.2009.03.035. otwiera się w nowej karcie
  15. R. Gogoi, M.S. Alam, R.K. Khandal, Effect of increasing NCO/OH molar ratio on the physicomechanical and thermal properties of isocyanate terminated polyurethane prepolymer, Int. J. Basic Appl. Sci. 3 (2014) 118-123, https://doi.org/10.14419/ ijbas.v3i2.2416. otwiera się w nowej karcie
  16. P. Parcheta, J. Datta, Kinetics study of the fully bio-based poly(propylene succinate) synthesis. Functional group approach, Polym. Degrad. Stab. 155 (2018) 238-249, https://doi.org/10.1016/j.polymdegradstab.2018.07.025. otwiera się w nowej karcie
  17. P. Parcheta, I. Koltsov, J. Datta, Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis, Polym. Degrad. Stab. 151 (2018) 90-99, https://doi.org/10.1016/j. polymdegradstab.2018.03.002. otwiera się w nowej karcie
  18. P. Parcheta, J. Datta, Structure analysis and thermal degradation characteristics of bio-based poly(propylene succinate)s obtained by using different catalyst amounts, J. Therm. Anal. Calorim. 130 (2017) 197-206, https://doi.org/10.1007/s10973- 017-6376-3. otwiera się w nowej karcie
  19. P. Parcheta, J. Datta, Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes -Synthesis and investigation, Polym. Test. 67 (2018) 110-121, https://doi.org/10.1016/j.polymertesting.2018.02.022. otwiera się w nowej karcie
  20. Z.S. Petrović, J. Milić, F. Zhang, J. Ilavsky, Fast-responding bio-based shape memory thermoplastic polyurethanes, Polymer (Guildf). 121 (2017) 26-37, https://doi.org/10.1016/j.polymer.2017.05.072. otwiera się w nowej karcie
  21. A. Saralegi, L. Rueda, B. Fernández-D'Arlas, I. Mondragon, A. Eceiza, M.A. Corcuera, Thermoplastic polyurethanes from renewable resources: Effect of soft segment chemical structure and molecular weight on morphology and final properties, Polym. Int. 62 (2013) 106-115, https://doi.org/10.1002/pi.4330. otwiera się w nowej karcie
  22. E. Głowińska, J. Datta, Bio polyetherurethane composites with high content of natural ingredients: hydroxylated soybean oil based polyol, bio glycol and micro- crystalline cellulose, Cellulose 23 (2016) 581-592, https://doi.org/10.1007/ s10570-015-0825-6. otwiera się w nowej karcie
  23. A. Prociak, G. Rokicki, J. Ryszkowska, Materiały poliuretanowe, Wydawnictwo Naukowe PWN, Warszawa, 2014.
  24. I. Yilgor, E. Yilgor, I.G. Guler, T.C. Ward, G.L. Wilkes, FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes, Polymer (Guildf) 47 (2006) 4105-4114, https://doi.org/ 10.1016/j.polymer.2006.02.027. otwiera się w nowej karcie
  25. M. Sultan, A. Javeed, M. Uroos, M. Imran, F. Jubeen, S. Nouren, N. Saleem, I. Bibi, R. Masood, W. Ahmed, Linear and crosslinked Polyurethanes based catalysts for reduction of methylene blue, J. Hazard. Mater. 344 (2018) 210-219, https://doi. org/10.1016/j.jhazmat.2017.10.019. otwiera się w nowej karcie
  26. P. Jutrzenka Trzebiatowska, I. Deuter, J. Datta, Cast polyurethanes obtained from reactive recovered polyol intermediates via crude glycerine decomposition process, React. Funct. Polym. 119 (2017) 20-25, https://doi.org/10.1016/j. reactfunctpolym.2017.07.009. otwiera się w nowej karcie
  27. J.L. Ryszkowska, M. Auguścik, A. Sheikh, A.R. Boccaccini, Biodegradable poly- urethane composite scaffolds containing Bioglass® for bone tissue engineering, Compos. Sci. Technol. 70 (2010) 1894-1908, https://doi.org/10.1016/j. compscitech.2010.05.011. otwiera się w nowej karcie
  28. J. Choi, D.S. Moon, J.U. Jang, W. Bin Yin, B. Lee, K.J. Lee, Synthesis of highly functionalized thermoplastic polyurethanes and their potential applications, Polym. (United Kingdom). 116 (2017) 287-294, https://doi.org/10.1016/j.polymer.2017. 03.083. otwiera się w nowej karcie
  29. M.A. Corcuera, L. Rueda, A. Saralegui, M.D. Martı, Effect of diisocyanate structure on the properties and microstructure of polyurethanes based on polyols derived from renewable, Resources (2011), https://doi.org/10.1002/app. otwiera się w nowej karcie
  30. Y. Oniki, K. Suzuki, Y. Higaki, R. Ishige, N. Ohta, A. Takahara, Molecular design of environmentally benign segmented polyurethane(urea)s: Effect of the hard segment component on the molecular aggregation states and biodegradation behavior, Polym. Chem. 4 (2013) 3735-3743, https://doi.org/10.1039/c3py00172e. otwiera się w nowej karcie
  31. T. Calvo-Correas, A. Santamaria-Echart, A. Saralegi, L. Martin, Á. Valea, M.A. Corcuera, A. Eceiza, Thermally-responsive biopolyurethanes from a biobased diisocyanate, Eur. Polym. J. 70 (2015) 173-185, https://doi.org/10.1016/j. eurpolymj.2015.07.022. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 321 razy

Publikacje, które mogą cię zainteresować

Meta Tagi