Effective Air Quality Prediction Using Reinforced Swarm Optimization and Bi-Directional Gated Recurrent Unit
Abstrakt
In the present scenario, air quality prediction (AQP) is a complex task due to high variability, volatility, and dynamic nature in space and time of particulates and pollutants. Recently, several nations have had poor air quality due to the high emission of particulate matter (PM2.5) that affects human health conditions, especially in urban areas. In this research, a new optimization-based regression model was implemented for effective forecasting of air pollution. Firstly, the input data were acquired from a real-time Beijing PM2.5 dataset recorded from 1 January 2010 to 31 December 2014. Additionally, the newer real-time dataset was recorded from 2016 to 2022 for four Indian cities: Cochin, Hyderabad, Chennai, and Bangalore. Then, data normalization was accomplished using the Min-Max normalization technique, along with correlation analysis for selecting highly correlated variables (wind direction, temperature, dew point, wind speed, and historical PM2.5). Next, the important features from the highly correlated variables were selected by implementing an optimization algorithm named reinforced swarm optimization (RSO). Further, the selected optimal features were given to the bi-directional gated recurrent unit (Bi-GRU) model for effective AQP. The extensive numerical analysis shows that the proposed model obtained a mean absolute error (MAE) of 9.11 and 0.19 and a mean square error (MSE) of 2.82 and 0.26 on the Beijing PM2.5 dataset and a real-time dataset. On both datasets, the error rate of the proposed model was minimal compared to other regression models.
Cytowania
-
3 0
CrossRef
-
0
Web of Science
-
3 3
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/su151411454
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Sustainability
nr 15,
ISSN: - Język:
- angielski
- Rok wydania:
- 2023
- Opis bibliograficzny:
- Gurumoorthy S., Kokku A. K., Falkowski-Gilski P., Divakarachari P. B.: Effective Air Quality Prediction Using Reinforced Swarm Optimization and Bi-Directional Gated Recurrent Unit// Sustainability -Vol. 15,iss. 14 (2023), s.11454-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/su151411454
- Źródła finansowania:
-
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 88 razy
Publikacje, które mogą cię zainteresować
Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction
- C. Aarthi,
- V. Jeya Ramya,
- P. Falkowski-Gilski
- + 1 autorów
Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail
- A. Mogarala Guruvaya,
- A. Kollu,
- P. Bidare Divakarachari
- + 2 autorów
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
- S. Natarajan,
- S. Kurian,
- P. Bidare Divakarachari
- + 1 autorów
Nature-Inspired Driven Deep-AI Algorithms for Wind Speed Prediction
- M. Dilshad Sabir,
- L. Khan,
- K. Hafeez
- + 2 autorów