Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes - Publikacja - MOST Wiedzy

Wyszukiwarka

Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes

Abstrakt

We present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of the analyte in the complex interfering matrix as leachate samples. The mechanism of nitro- group reduction is attributed to the sensing effect, as revealed in the voltammograms of TNBI. The developed sensor model has two linear regions extending from 0.02 ppm to 1.4 ppm and from 2 ppm to 16 ppm resulting from adsorption and diffusion-controlled processes, respectively. The limit of detection was as low as 0.52 ppm (1.66 μM L-1) thanks to the electrochemical performance of the joint effect of the diamond/graphene composite nanowall surface.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 40 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE SENSORS JOURNAL nr 20, strony 9637 - 9643,
ISSN: 1530-437X
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Dettlaff A., Jakóbczyk P., Sobaszek M., Ficek M., Dec B., Łuczkiewicz A., Szala M., Wojas J., Ossowski T., Bogdanowicz R.: Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes// IEEE SENSORS JOURNAL -Vol. 20,iss. 17 (2020), s.9637-9643
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/jsen.2020.2973451
Bibliografia: test
  1. Z. Takáts, I. Cotte-Rodriguez, N. Talaty, H. Chen, and R. G. Cooks, "Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry," Chem. Commun., no. 15, pp. 1950- 1952, 2005. otwiera się w nowej karcie
  2. R. D. Luggar, M. J. Farquharson, J. A. Horrocks, and R. J. otwiera się w nowej karcie
  3. Lacey, "Multivariate Analysis of Statistically Poor EDXRD Spectra for the Detection of Concealed Explosives," X-Ray Spectrom., vol. 27, no. 2, pp. 87-94, 1998.
  4. W. V. Nunes, A. X. Da Silva, V. R. Crispim, and R. Schirru, "Explosives detection using prompt-gamma neutron activation and neural networks," Appl. Radiat. Isot., vol. 56, no. 6, pp. 937-943, 2002. otwiera się w nowej karcie
  5. H. Sohn, M. J. Sailor, D. Magde, and W. C. Trogler, "Sailor- otwiera się w nowej karcie
  6. Trogler-TNT-Silole," no. 19, pp. 1-10, 2003.
  7. J. de Sanoit, E. Vanhove, P. Mailley, and P. Bergonzo, "Electrochemical diamond sensors for TNT detection in water," Electrochim. Acta, vol. 54, no. 24, pp. 5688-5693, 2009. otwiera się w nowej karcie
  8. J. Wang, R. K. Bhada, J. Lu, and D. MacDonald, "Remote electrochemical sensor for monitoring TNT in natural waters," Anal. Chim. Acta, vol. 361, no. 1-2, pp. 85-91, 1998. otwiera się w nowej karcie
  9. J. Wang, "Electrochemical sensing of explosives," Counterterrorist Detect. Tech. Explos., pp. 91-107, 2007. otwiera się w nowej karcie
  10. P. Rabenecker and K. Pinkwart, "A look behind electrochemical detection of explosives," Propellants, Explos. Pyrotech., vol. 34, no. 3, pp. 274-279, 2009. otwiera się w nowej karcie
  11. M. Szala and R. Lewczuk, "New Synthetic Methods for 4,4',5,5'-Tetranitro-2,2'-bi-1H-imidazole (TNBI)," Cent.
  12. Eur. J. Energ. Mater., vol. 12, no. 2, pp. 261-270, 2015. otwiera się w nowej karcie
  13. S. G. Cho, J. R. Cho, E. M. Goh, J. K. Kim, R. Damavarapu, and R. Surapaneni, "Synthesis and characterization of 4,4′5,5′-tetranitro-2, 2′-Bi-1H-imidazole(TNBI)," otwiera się w nowej karcie
  14. Propellants, Explos. Pyrotech., vol. 30, no. 6, pp. 445-449, 2005. otwiera się w nowej karcie
  15. M. Sobaszek et al., "Diamond Phase (sp3-C) Rich Boron- Doped Carbon Nanowalls (sp2-C): Physicochemical and Electrochemical Properties," J. Phys. Chem. C, vol. 121, no. 38, pp. 20821-20833, 2017. otwiera się w nowej karcie
  16. K. Siuzdak, M. Ficek, M. Sobaszek, J. Ryl, and M. Gnyba, "Boron enhanced growth of micron-length carbon based nanowall: A route towards high rates electrochemical biosensing," pp. 5-8, 2017. otwiera się w nowej karcie
  17. K. J. Sankaran et al., "Self-organized multi-layered graphene-boron-doped diamond hybrid nanowalls for high- performance electron emission devices," Nanoscale, vol. 10, no. 3, pp. 1345-1355, 2018. otwiera się w nowej karcie
  18. S. Fudala-Ksiazek et al., "Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: Advanced pre-treatment prior to the biological nitrogen removal," Chem. Eng. J., vol. 334, pp. 1074-1084, 2018. otwiera się w nowej karcie
  19. R. Lewczuk et al., "Explosive properties of 4,4',5,5'- tetranitro-2,2'-bi-1H-imidazole dihydrate," Cent. Eur. J. otwiera się w nowej karcie
  20. Energ. Mater., vol. 13, no. 3, pp. 612-626, 2016. otwiera się w nowej karcie
  21. R. Bogdanowicz, "Characterization of Optical and Electrical Properties of," Metrol. Meas. Syst., vol. XXI, no. 4, pp. 685- 698, 2014. otwiera się w nowej karcie
  22. M. Kraszewski and R. Bogdanowicz, "Laser reflectance interferometry system with a 405 nm laser diode for in situ measurements of CVD diamond thickness," Metrol. Meas. Syst., vol. 20, no. 4, pp. 543-554, 2013. otwiera się w nowej karcie
  23. K. J. Sankaran et al., "Self-organized multi-layered graphene-boron-doped diamond hybrid nanowalls for high- performance electron emission devices," Nanoscale, vol. 10, no. 3, pp. 1345-1355, 2018. otwiera się w nowej karcie
  24. APHA-AWWA-WEF, "Standard methods for the examination of water and wastewater," Washington D.C., 2005. otwiera się w nowej karcie
  25. QuantumATK version 2018.06, Synopsys QuantumATK, https://www.synopsys.com/silicon/quantumatk.html. otwiera się w nowej karcie
  26. M. Schlipf and F. Gygi, "Optimization algorithm for the generation of ONCV pseudopotentials," Comput. Phys. Commun., vol. 196, pp. 36-44, 2015. otwiera się w nowej karcie
  27. C. K. Chua, M. Pumera, and L. Rulíšek, "Reduction pathways of 2,4,6-trinitrotoluene: An electrochemical and theoretical study," J. Phys. Chem. C, vol. 116, no. 6, pp. 4243-4251, 2012. otwiera się w nowej karcie
  28. Ş. Saǧlam, A. Üzer, E. Erçaǧ, and R. Apak, "Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines," Anal. otwiera się w nowej karcie
  29. Chem., vol. 90, no. 12, pp. 7364-7370, 2018. otwiera się w nowej karcie
  30. Y. T. Yew, A. Ambrosi, and M. Pumera, "Nitroaromatic explosives detection using electrochemically exfoliated graphene," Sci. Rep., vol. 6, no. April, pp. 1-11, 2016. otwiera się w nowej karcie
  31. R. Zhang, C. Zhang, F. Zheng, X. Li, C. L. Sun, and W. Chen, "Nitrogen and sulfur co-doped graphene nanoribbons: A novel metal-free catalyst for high performance electrochemical detection of 2, 4, 6-trinitrotoluene (TNT)," otwiera się w nowej karcie
  32. Carbon N. Y., vol. 126, pp. 328-337, 2018. otwiera się w nowej karcie
  33. C. K. Chua and M. Pumera, "Influence of Methyl Substituent Position on Redox Properties of Nitroaromatics Related to 2,4,6-Trinitrotoluene," Electroanalysis, vol. 23, no. 10, pp. 2350-2356, 2011. otwiera się w nowej karcie
  34. K. Bratin, P. T. Kissinger, R. C. Briner, and C. S. Bruntlett, "Determination of nitro aromatic, nitramine, and nitrate ester explosive compounds in explosive mixtures and gunshot residue by liquid chromatography and reductive electrochemical detection," Anal. Chim. Acta, vol. 130, no. 2, pp. 295-311, 1981. otwiera się w nowej karcie
  35. R. A. Soomro, O. P. Akyuz, H. Akin, R. Ozturk, and Z. H. otwiera się w nowej karcie
  36. Ibupoto, "Highly sensitive shape dependent electro- catalysis of TNT molecules using Pd and Pd-Pt alloy based nanostructures," RSC Adv., vol. 6, no. 51, pp. 44955-44962, 2016.
  37. A. M. O'Mahony and J. Wang, "Nanomaterial-based electrochemical detection of explosives: A review of recent developments," Anal. Methods, vol. 5, no. 17, pp. 4296- 4309, 2013. otwiera się w nowej karcie
  38. Authorized licensed use limited to: Politechnika Gdanska. Downloaded on February 24,2020 at 10:42:14 UTC from IEEE Xplore. Restrictions apply. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 127 razy

Publikacje, które mogą cię zainteresować

Meta Tagi