Field Calibration of Low-Cost Particulate Matter Sensors Using Artificial Neural Networks and Affine Response Correction
Abstrakt
Due to detrimental effects of atmospheric particulate matter (PM), its accurate monitoring is of paramount importance, especially in densely populated urban areas. However, precise measurement of PM levels requires expensive and sophisticated equipment. Although low-cost alternatives are gaining popularity, their reliability is questionable, attributed to sensitivity to environmental conditions, inherent instability, and manufacturing imperfections. The objectives of this paper include (i) introduction of an innovative approach to field calibration for low-cost PM sensors using artificial intelligence methods, (ii) implementation of the calibration procedure involving optimized artificial neural network (ANN) and combined multiplicative and additive correction of the low-cost sensor readings, (iii) demonstrating the efficacy of the presented technique using a custom-designed portable PM monitoring platform and reference data acquired from public measurement stations. The results obtained through comprehensive experiments conducted using the aforementioned low-cost sensor and reference data demonstrate remarkable accuracy for the calibrated sensor, with correlation coefficients of 0.86 for PM1 and PM2.5, and 0.76 PM10 (particles categorized as having diameter equal to or less than 1m, 2.5m, and 10m, respectively), along with low RMSE values of only 3.1, 4.1, and 4.9 µg/m³.
Cytowania
-
4
CrossRef
-
0
Web of Science
-
4
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.measurement.2024.114529
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
MEASUREMENT
nr 230,
strony 1 - 16,
ISSN: 0263-2241 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Kozieł S., Pietrenko-Dąbrowska A., Wójcikowski M., Pankiewicz B.: Field Calibration of Low-Cost Particulate Matter Sensors Using Artificial Neural Networks and Affine Response Correction// MEASUREMENT -Vol. 230, (2024), s.1-16
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.measurement.2024.114529
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 80 razy
Publikacje, które mogą cię zainteresować
Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors
- P. Jørstad,
- M. Wójcikowski,
- T. Cao
- + 3 autorów