Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series - Publikacja - MOST Wiedzy

Wyszukiwarka

Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series

Abstrakt

This study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost outperformed linear regression. Furthermore, for random forest, XGBoost, and AdaBoost, the coefficients of determination were higher, indicating a better fit to the data. Moreover, time series forecasting models such as autoregressive integrated moving average, seasonal autore- gressive integrated moving average, and exponential smoothing were used to predict future energy consumption and carbon dioxide emissions in Vietnam. The models were trained and verified using historical data. The time series model findings showed that energy consumption rose steadily during the predicted timeframe. The autoregressive integrated moving aver- age model predicted 162258.77 ktoe of energy use by 2050, whereas the seasonal autoregressive integrated moving average and exponential smoothing modes predicted 160673.8 ktoe and 153206.44 ktoe of energy use, respectively. By 2050, the autoregressive integrated moving average model anticipated 6.51 metric tons of carbon dioxide emissions per capita, the SARIMA model 7.769 metric tons, and the exponential smoothing model 6.22 metric tons. The findings show how machine learning techniques and time series models may be used to estimate energy usage and carbon dioxide emissions in Vietnam. These insights could assist Vietnam government in making informed judgments concerning energy planning and policy development

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Autorzy (8)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Clean Technologies and Environmental Policy nr 24, strony 4405 - 4431,
ISSN: 1618-954X
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Le T. T., Sharma P., Osman S. M., Dzida M., Nguyen P. Q. P., Tran M. H., Cao D. N., Tran V. D.: Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series// Clean Technologies and Environmental Policy -Vol. 24, (2024), s.4405-4431
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s10098-024-02852-9
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 47 razy

Publikacje, które mogą cię zainteresować

Meta Tagi