Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives - Publikacja - MOST Wiedzy

Wyszukiwarka

Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives

Abstrakt

In-wheel electric drives are promising as actuators in active safety systems of electric and hybrid vehicles. This new function requires dedicated control algorithms, making it essential to deliver models that reflect better the wheel-torque control dynamics of electric drives. The timing of digital control events, whose importance is stressed in current research, still lacks an analytical description allowing for modeling its influence on control system dynamics. In this paper, authors investigate and compare approaches to the analog and discrete analytical modeling of torque control loop in digitally controlled electric drive. Five different analytical models of stator current torque component control are compared to judge their accuracy in representing drive control dynamics related to the timing of digital control events. The Bode characteristics and step-response characteristics of the analytical models are then compared with those of a reference model for three commonly used cases of motor discrete control schemes. Finally, the applicability of the presented models is discussed.

Cytowania

  • 2

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 23 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Archives of Electrical Engineering nr 66, strony 829 - 842,
ISSN: 1427-4221
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Jarzębowicz L., Opaliński A.: Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives// Archives of Electrical Engineering. -Vol. 66., nr. 4 (2017), s.829-842
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1515/aee-2017-0063
Bibliografia: test
  1. Bera T.K., Bhattacharya K., Samantaray A.K., Evaluation of antilock braking system with an inte- grated model of full vehicle system dynamics, Simulation Modelling Practice and Theory, no. 19, pp. 2131-2150 (2011). otwiera się w nowej karcie
  2. Cabrera J.A., Castillo J.J., Carabias E., Ortiz A., Evolutionary Optimization of a Motorcycle Trac- tion Control System Based on Fuzzy Logic, IEEE Transactions on Fuzzy Systems, vol. 23, no. 5, pp. 1594-1607 (2015). otwiera się w nowej karcie
  3. Ha H., Kim J., Lee J., Cornering stability enhancement algorithm for in-wheel electric vehicle, 2014 IEEE International Conference on Industrial Technology (ICIT), pp. 806-809 (2014). otwiera się w nowej karcie
  4. Ivanov V., Savitski D., Shyrokau B., A Survey of Traction Control and Anti-lock Braking Systems of Full Electric Vehicles with Individually-Controlled Electric Motors, IEEE Transactions on Vehi- cular Technology, vol. 64, no. 9, pp. 3878-3896 (2015). otwiera się w nowej karcie
  5. Guo H., Yu R., Qiang W., Chen H., Optimal slip based traction control for electric vehicles using feedback linearization, International Conference on Mechatronics and Control, pp. 11591164 (2014). otwiera się w nowej karcie
  6. Zhang Z., Zhang J., Sun D., Lv C., Research on control strategy of electric-hydraulic hybrid anti- lock braking system of an electric passenger car, 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 419424 (2015). otwiera się w nowej karcie
  7. Kondratiev I., Nikiforov A., Veselov G., Kolesnikov A., Synergetic control for induction motor based wheel-drive system, 2012 IEEE Int. Electric Vehicle Conference (IEVC), pp. 17 (2012). otwiera się w nowej karcie
  8. M'sirdi N.K., Rabhi A., Fridman L., Davila J., Delanne Y., Second Order Sliding-Mode Observer for Estimation of Vehicle Dynamic Parameters, International Journal of Vehicle Design, vol 48, no. 3/4, pp. 190207 (2008). otwiera się w nowej karcie
  9. Petersen I., Wheel Slip Control in ABS Brakes using Gain Scheduled Optimal Control with Con- straints, PhD Thesis, Norwegian University of Science and Technology, Trondheim (2003). otwiera się w nowej karcie
  10. Xiong L., Yu Z.,, Vehicle Dynamic Control of 4 In-Wheel-Motor Drived Electric Vehicle, Electric Vehicles -Modelling and Simulations, ed. Seref Soylu, InTech (2011). otwiera się w nowej karcie
  11. Savitski D., Ivanov V., Augsburg K., Shyroka B., Wragge-Morley R., Pütz T., Barber P., The new paradigm of an anti-lock braking system for a full electric vehicle: experimental investigation and benchmarking, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Auto- mobile Engineering, vol. 230, no. 10, pp. 1364-1377 (2015). otwiera się w nowej karcie
  12. Opalinski A., Jarzebowicz L., Analytical modeling of electric drives for vehicle traction control systems, 11th Interntional Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo (2015). otwiera się w nowej karcie
  13. Banks J., Chwif L., Wornings about simulation, Journal of Simulation, vol. 279, no. 5 (2011). otwiera się w nowej karcie
  14. Böcker J., Buchholz O., Can oversampling improve the dynamics of PWM controls?, IEEE International Conference on Industrial Technology (ICIT), Cape Town, pp. 1818-1824 (2013). otwiera się w nowej karcie
  15. Jarzebowicz L., Opalinski A., Cisek M., Improving Control Dynamics of PMSM Drive by Esti- mating Zero-Delay Current Value, Elektronika ir Elektrotechnika, vol. 21, no. 2, pp. 2023 (2015). otwiera się w nowej karcie
  16. Anuchin A., Kozachenko V., Current loop dead-beat control with the digital PI-controller, 16th European Conference on Power Electronics and Applications (EPE'14-ECCE), pp. 18 (2014). otwiera się w nowej karcie
  17. Hinkkanen M., Awan H.A.A., Qu Z., Tuovinen T., Briz F., Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design, IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1530-1541 (2016). otwiera się w nowej karcie
  18. Vajta M., Some Remarks on Pade-Approximation, 3rd TEMPUS-INTCOM Symposium (2000).
  19. Silva G.J., Datta A., Bhattacharyya S.P., Controller design via Pade approximation can lead to instability, 40th IEEE Conference on Decision and Control, vol. 5, pp. 4733-4737 (2001). otwiera się w nowej karcie
  20. Time R.J., Delay Systems: An Overview of Some Recent Advances and Open Problems, Automa- tica, vol. 39, pp. 1667-1694 (2003).
  21. Gu D-W., Petkov H.P., Konstantinov M.M., Robust Control Design with MATLAB, 2-nd Ed., Springer (2013). otwiera się w nowej karcie
  22. Jury E.I., Theory and Application of the Z-Transform Method, R. E. Krieger Publishing Company (1973).
  23. Czerwinski R., Rudnicki T., Examination of electromagnetic noises and practical operations of a PMSM motor driven by a DSP and controlled by means of field oriented control, Elektronika ir Elektrotechnika, vol. 20, no. 5, pp. 46-50 (2014). otwiera się w nowej karcie
  24. Jarzebowicz L., Karwowski K., Kulesza W.J., Sensorless algorithm for sustaining controllability of IPMSM drive in electric vehicle after resolver fault, Control Engineering Practice, vol. 58, pp. 117126 (2017). otwiera się w nowej karcie
  25. Jarzebowicz L., Errors of a Linear Current Approximation in High-Speed PMSM Drives, IEEE Transactions on Power Electronics, vol. 32, iss. 11, Nov. 2017, pp. 8254-8257 (2017). otwiera się w nowej karcie
  26. Nam K.H., AC Motor Control and Electric Vehicle Applications, CRC Press, p. 9 (2010). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 112 razy

Publikacje, które mogą cię zainteresować

Meta Tagi