Genre-Based Music Language Modeling with Latent Hierarchical Pitman-Yor Process Allocation - Publikacja - MOST Wiedzy

Wyszukiwarka

Genre-Based Music Language Modeling with Latent Hierarchical Pitman-Yor Process Allocation

Abstrakt

In this work we present a new Bayesian topic model: latent hierarchical Pitman-Yor process allocation (LHPYA), which uses hierarchical Pitman-Yor pr ocess priors for both word and topic distributions, and generalizes a few of the existing topic models, including the latent Dirichlet allocation (LDA), the bi- gram topic model and the hierarchical Pitman-Yor topic model. Using such priors allows for integration of -grams with a topic model, while smoothing them with the state-of-the-art method. Our model is evaluated by measuring its perplexity on a dataset of musical genre and harmony annotations 3GenreDatabase (3GDB) andbymeasuringitsabilitytopredictmusicalgenrefromchord sequences. In terms of perplexit y, for a 262-chord dictionary we achieve a value of 2.74, compared to 18.05 for trigrams and 7.73 for a unigram topic model. In terms of genre prediction accuracy with 9 genres, the proposed approach performs about 33% better in relative terms than genre-dependent -grams, ac hieving 60.4% of accuracy.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
2nd IEEE Global Conference on Signal and Information Processing strony 89 - 98
Język:
angielski
Rok wydania:
2014
Opis bibliograficzny:
Raczyński S., Vincent E.: Genre-Based Music Language Modeling with Latent Hierarchical Pitman-Yor Process Allocation// 2nd IEEE Global Conference on Signal and Information Processing/ : , 2014, s.89-98
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/taslp.2014.2300344
Weryfikacja:
Politechnika Gdańska

wyświetlono 106 razy

Publikacje, które mogą cię zainteresować

Meta Tagi