GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition - Publikacja - MOST Wiedzy

Wyszukiwarka

GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition

Abstrakt

In the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing three various metrics: energy (E), energy-delay product (EDP) as well as energy-delay sum (EDS) which resulted in considerable energy savings, with a low to medium performance loss for EDP and EDS. Specifically, for Quadro 6000 and minimization of E we obtained energy savings of 28.5%–32.5%, for EDP 25%–28% of energy was saved with average 4.5%–15.4% performance loss, for EDS (k = 2) 22%–27% of energy was saved with 4.5%–13.8% performance loss. For V100 we found average energy savings of 24%–33%, for EDP energy savings of 23%–27% with corresponding performance loss of 13%–21% and for EDS (k = 2) 23.5%–27.3% of energy was saved with performance loss of 4.5%–13.8%.

Cytowania

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 132 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2022 The Author(s), under exclusive license to Springer Nature Switzerland)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Krzywaniak A., Czarnul P., Proficz J.: GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition// / : , 2022,
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-08751-6_48
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 144 razy

Publikacje, które mogą cię zainteresować

Meta Tagi