Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
Abstrakt
Machine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) is applied to facilitate Machine Learning. For effective and efficient decision-making in Machine Learning, the environment's own experience is captured, stored and reused using the DDNA technique. The proposed approach is implemented on practical test cases like a Chatbot. Decisional DNA gathers explicit experiential knowledge based on formal decision events and uses this knowledge to support decision-making processes. The experimental test and results of the presented implementation of Decisional DNA Chatbot case studies support it as a technology that can improve and be applied to the technology, enhancing intelligence by predicting capabilities and facilitating knowledge engineering processes.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
1
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.procs.2021.09.170
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Opublikowano w:
-
Procedia Computer Science
nr 192,
strony 3955 - 3965,
ISSN: 1877-0509 - Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Shafiq S. I., Sanin C., Szczerbicki E.: Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance// / : , 2021, s.3955-3965
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.procs.2021.09.170
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 118 razy
Publikacje, które mogą cię zainteresować
Experience Based Clinical Decision Support Systems: An Overview and Case Studies
- C. Toro,
- M. Grana,
- E. Sanchez
- + 2 autorów
Experience based knowledge representation for Internet of Things and Cyber Physical Systems with case studies
- C. Sanin,
- Z. Haoxi,
- I. Shafiq
- + 3 autorów
Developing an Ontology from Set of Experience KnowledgeStructure
- C. Sanin,
- E. Szczerbicki,
- C. Toro