Investigation of Weigh-in-Motion Measurement Accuracy on the Basis of Steering Axle Load Spectra - Publikacja - MOST Wiedzy

Wyszukiwarka

Investigation of Weigh-in-Motion Measurement Accuracy on the Basis of Steering Axle Load Spectra

Abstrakt

Weigh-in-motion systems are installed in pavements or on bridges to identify and reduce the number of overloaded vehicles and minimise their adverse eect on road infrastructure. Moreover, the collected trac data are used to obtain axle load characteristics, which are very useful in road infrastructure design. Practical application of data from weigh-in-motion has become more common recently, which calls for adequate attention to data quality. This issue is addressed in the presented paper. The aim of the article is to investigate the accuracy of 77 operative weigh-in-motion stations by analysing steering axle load spectra. The proposed methodology and analysis enabled the identification of scale and source of errors that occur in measurements delivered from weigh-in-motion systems. For this purpose, selected factors were investigated, including the type of axle load sensor, air temperature and vehicle speed. The results of the analysis indicated the obvious eect of the axle load sensor type on the measurement results. It was noted that systematic error increases during winter, causing underestimation of axle loads by 5% to 10% for quartz piezoelectric and bending beam load sensors, respectively. A deterioration of system accuracy is also visible when vehicle speed decreases to 30 km/h. For 25% to 35% of cases, depending on the type of sensor, random error increases for lower speeds, while it remains at a constant level at higher speeds. The analysis also delivered a standard steering axle load distribution, which can have practical meaning in the improvement of weigh-in-motion accuracy and trac data quality.

Cytowania

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 2 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 35 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SENSORS nr 19, strony 1 - 17,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Ryś D.: Investigation of Weigh-in-Motion Measurement Accuracy on the Basis of Steering Axle Load Spectra// SENSORS. -Vol. 19, iss. 15 (2019), s.1-17
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s19153272
Bibliografia: test
  1. Pais, J.C.; Figueiras, H.; Pereira, P.; Kaloush, K. The pavements cost due to traffic overloads. Int. J. Pavement Eng. 2018, 8436, 1-11. [CrossRef] otwiera się w nowej karcie
  2. Rys, D.; Judycki, J.; Jaskula, P. Analysis of effect of overloaded vehicles on fatigue life of flexible pavements based on weigh in motion (WIM) data. Int. J. Pavement Eng. 2016, 17, 716-726. [CrossRef] otwiera się w nowej karcie
  3. Pais, J.C.; Amorim, S.I.R.; Minhoto, M.J.C. Impact of Traffic Overload on Road Pavement Performance. J. Transp. Eng. 2013, 139, 873-879. [CrossRef] otwiera się w nowej karcie
  4. Budzyński, M.; Ryś, D.; Kustra, W. Selected Problems of Transport in Port Towns-Tri-City as an Example. Pol. Marit. Res. 2017, 24, 16-24. [CrossRef] otwiera się w nowej karcie
  5. Rys, D.; Jaskula, P. Effect of Overloaded Vehicles on Whole Life Cycle Cost of Flexible Pavements. In Proceedings of the GeoChina 2018, Testing and Characterization of Asphalt Materials and Pavement Structures, Sustainable Civil Infrastructures, Hangzhou, China, 23-25 July 2018; otwiera się w nowej karcie
  6. Zhang, K., Ed.; Springer International Publishing: Basel, Switzerland, 2018; pp. 104-117.
  7. Splawinska, M.; Zielinski, P.; Burnos, P. Influence of Traffic Flow Variability of Heavy Vehicles and Temperature on Pavement Fatigue Life. Roads Bridges Drogi Mosty 2015, 14, 117-132.
  8. Jacob, B.; Cottineau, L.M. Weigh-in-motion for Direct Enforcement of Overloaded Commercial Vehicles. Transp. Res. Procedia 2016, 14, 1413-1422. [CrossRef] otwiera się w nowej karcie
  9. Oskarbski, J.; Kaszubowski, D. Implementation of Weigh-in-Motion System in Freight Traffic Management in Urban Areas. Transp. Res. Procedia 2016, 16, 449-463. [CrossRef] otwiera się w nowej karcie
  10. Timm, D.H.; Tisdale, S.M.; Turochy, R.E. Axle Load Spectra Characterization by Mixed Distribution Modeling. J. Transp. Eng. 2005, 131, 83-88. [CrossRef] otwiera się w nowej karcie
  11. Turochy, R.E.; Timm, D.H.; Tisdale, S.M. Truck Equivalency Factors, Load Spectra Modeling and Effects on Pavement Design; Highway Research Center: Auburn, AL, USA, 2005.
  12. Wang, Y.; Donn, H.; Kamyar, M. Axle Load Distribution Characterization for Mechanistic Pavement Design. J. Transp. Eng. 2007, 133. [CrossRef] otwiera się w nowej karcie
  13. Macea, L.F.; Márquez, L.; LLinás, H. Improvement of Axle Load Spectra Characterization by a Mixture of Three Distributions. J. Transp. Eng. 2015, 141, 04015030. [CrossRef] otwiera się w nowej karcie
  14. Haider, S.W.; Harichandran, R.S.; Dwaikat, M.B. Closed-Form Solutions for Bimodal Axle Load Spectra and Relative Pavement Damage Estimation. J. Transp. Eng. 2009, 135, 974-983. [CrossRef] otwiera się w nowej karcie
  15. Tran, N.H.; Hall, K.D. Development and Influence of Statewide Axle Load Spectra on Flexible Pavement Performance. Transp. Res. Rec. 2007, 2037, 106-114. [CrossRef] otwiera się w nowej karcie
  16. Rys, D.; Judycki, J.; Jaskula, P. Determination of Vehicles Load Equivalency Factors for Polish Catalogue of Typical Flexible and Semi-rigid Pavement Structures. Transp. Res. Procedia 2016, 14, 2382-2391. [CrossRef] otwiera się w nowej karcie
  17. Mohammed, B.; Hassan, R.; Alaswadko, N. The effect of traffic data source on deterioration rates of heavy-duty flexible pavements. Int. J. Pavement Eng. 2018, 19, 1096-1110. [CrossRef] otwiera się w nowej karcie
  18. Jia, Z.; Fu, K.; Lin, M. Tire Pavement Contact-Aware Weight Estimation for Multi-Sensor WIM Systems. Sensors 2019, 19, 2027. [CrossRef] [PubMed] otwiera się w nowej karcie
  19. Qin, T.; Lin, M.; Cao, M.; Fu, K.; Ding, R. Effects of sensor location on dynamic load estimation in weigh-in-motion system. Sensors 2018, 18, 3044. [CrossRef] [PubMed] otwiera się w nowej karcie
  20. Bunnell, W.A.; Li, H.; Reed, M.; Wells, T.; Harris, D.; Antich, M.; Harney, S.; Bullock, D.M. Implementation of Weigh-in-Motion Data Quality Control and Real-Time Dashboard Development; Indiana Department of Transportation: West Lafayette, IN, USA, 2018. otwiera się w nowej karcie
  21. Farkhideh, N.; Nassiri, S.; Bayat, A. Evaluation of accuracy of weigh-in-motion systems in Alberta. Int. J. Pavement Res. Technol. 2014, 7, 169-177.
  22. Haider, S.W.; Harichandran, R.S.; Dwaikat, M.B. Impact of Systematic Axle Load Measurement Error on Pavement Design Using Mechanistic-Empirical Pavement Design Guide. J. Transp. Eng. 2012, 138, 381-386. [CrossRef] otwiera się w nowej karcie
  23. Prozzi, J.A.; Hong, F. Effect of Weigh-in-Motion System Measurement Errors on Load-Pavement Impact Estimation. J. Transp. Eng. 2007, 133, 1-10. [CrossRef] otwiera się w nowej karcie
  24. Haider, S.; Harichandran, R. The Impact of Weigh-in-Motion Measurement Error on Mechanistic-Empirical Pavement Design Guide Reliability. In Proceedings of the First Congress of Transportation and Development Institute (TDI), Chicago, IL, USA, 13-16 March 2011; pp. 548-557. otwiera się w nowej karcie
  25. NCHRP. Traffic Data Collection, Analysis, and Forecasting for Mechanistic Pavement Design; NCHRP: Washington, DC, USA, 2005. otwiera się w nowej karcie
  26. Quinley, R. WIM Data Analyst's Manual; otwiera się w nowej karcie
  27. Jacob, B.; O'Brien, E.; Jehaes, S. COST 323: Weigh-in-Motion of Road Vehicles-Final Report; Transport Research Laboratory: Wokingham, UK, 2002. otwiera się w nowej karcie
  28. Burnos, P. Alternative Automatic Vehicle Classification Method. Metrol. Meas. Syst. 2010, 17, 323-332. [CrossRef] otwiera się w nowej karcie
  29. Mai, D.; Turochy, R.E.; Timm, D.H. Quality control of weigh-in-motion data incorporating threshold values and rational procedures. Transp. Res. Part C Emerg. Technol. 2013, 36, 116-124. [CrossRef] otwiera się w nowej karcie
  30. Han, L.D.; Ko, S.; Gu, Z.; Jeong, M.K. Adaptive weigh-in-motion algorithms for truck weight enforcement. Transp. Res. Part C Emerg. Technol. 2012, 24, 256-269. [CrossRef] otwiera się w nowej karcie
  31. ASTM. Standard Specification for Highway Weigh-In-Motion (WIM) Systems with User Requirements and Test Methods; ASTM: West Conshohocken, PA, USA, 2002. otwiera się w nowej karcie
  32. Burnos, P.; Gajda, J. Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System. Sensors 2016, 16, 2143. [CrossRef] [PubMed] otwiera się w nowej karcie
  33. Burnos, P.; Rys, D. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems. Sensors 2017, 17, 2053. [CrossRef] otwiera się w nowej karcie
  34. Papagiannakis, A.T.; Johnston, E.C.; Alavi, S. Fatigue performance of piezoelectric Weigh-in-Motion sensors. Transp. Res. Rec. J. Transp. Res. Board 2001, 1769, 95-102. [CrossRef] otwiera się w nowej karcie
  35. Papagiannakis, A.T.; Johnston, E.C.; Alavi, S.; Mactutis, J.A. Laboratory and field evaluation of piezoelectric Weigh-in-Motion sensors. J. Test. Eval. 2001, 29, 535.
  36. Chatterjee, I.; Liao, C.F.; Davis, G.A. A statistical process control approach using cumulative sum control chart analysis for traffic data quality verification and sensor calibration for weigh-in-motion systems. J. Intell. Transp. Syst. 2017, 21, 111-122. [CrossRef] otwiera się w nowej karcie
  37. Nichols, A.P.; Bullock, D.; Schneider, W. Detecting Differential Drift in Weigh-in-Motion Wheel Track Sensors. Transp. Res. Rec. J. Transp. Res. Board 2009, 2121, 135-144. [CrossRef] otwiera się w nowej karcie
  38. Burnos, P.; Gajda, J.; Sroka, R. Accuracy criteria for evaluation of Weigh-in-Motion Systems. Metrol. Meas. Syst. 2018, 25, 743-754.
  39. Judycki, J.; Jaskula, P.; Pszczola, M.; Rys, D.; Jaczewski, M.; Alenowicz, J.; Dolzycki, B.; Stienss, M. Analizy i Projektowanie Konstrukcji Nawierzchni Podatnych i Półsztywnych; otwiera się w nowej karcie
  40. Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2014.
  41. Pszczoła, M.; Rys, D.; Jaskula, P. Analysis of climatic zones in Poland with regard to asphalt performance grading. Roads Bridges Drogi Mosty 2017, 16, 245-264. otwiera się w nowej karcie
  42. Pszczola, M. Equivalent temperature for design of asphalt pavements in Poland. MATEC Web Conf. 2019, 262, 05010. [CrossRef] otwiera się w nowej karcie
  43. Pszczoła, M.; Judycki, J.; Ryś, D. Evaluation of Pavement Temperatures in Poland during Winter Conditions. Transp. Res. Procedia 2016, 14, 738-747. [CrossRef] otwiera się w nowej karcie
  44. © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 107 razy

Publikacje, które mogą cię zainteresować

Meta Tagi