Landfill leachates and wastewater of maritime origin as possible sources of endocrine disruptors in municipal wastewater - Publikacja - MOST Wiedzy

Wyszukiwarka

Landfill leachates and wastewater of maritime origin as possible sources of endocrine disruptors in municipal wastewater

Abstrakt

In this study, wastewater from municipal services, such as a port wastewater reception facility (PRF-WW) and a municipal solid waste plant (MSWP), was tested for the presence of the suspected endocrine-disrupting compounds phthalates (PAEs) and bisphenol A (BPA). PAEs and BPA were found in this study in high concentrations in raw wastewater obtained from passenger ships (RMT-WWs) (up to 738 μg/L and 957 μg/L, respectively) collected in the Port of Gdynia and in landfill leachates (LLs) (up to 536 μg/L and up to 2202 μg/L, respectively) from a MSWP located near Gdynia. In particular, the presence of reprotoxic di(2-ethylhexyl) phthalate (DEHP, up to 536 μg/L in LLs and up to 738 μg/L in RMT-WWs) requires further action because if this compound, as well as other PAEs and BPA, is not degraded by activated sludge microorganisms, it may reach receiving waters and adversely impact aquatic organisms. Therefore, PAEs and BPA should be removed either during the onsite pretreatment of tested industrial wastewater or during tertiary treatment at municipal wastewater treatment plants (WWTPs, representing end-of-pipe technology).

Cytowania

  • 3 0

    CrossRef

  • 0

    Web of Science

  • 3 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 51 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH nr 26, strony 25690 - 25701,
ISSN: 0944-1344
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Wilk B., Fudala-Książek S., Szopińska M., Łuczkiewicz A.: Landfill leachates and wastewater of maritime origin as possible sources of endocrine disruptors in municipal wastewater// ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH. -Vol. 26, iss. 25 (2019), s.25690-25701
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11356-019-05566-4
Bibliografia: test
  1. Albergamo V, Blankert B, Cornelissen ER, Hofs B, Knibbe W-J, Meer W, Voogt P (2019) Removal of polar organic micropollutants by pilot- scale reverse osmosis drinking water treatment. Water Res 148:535- 545. https://doi.org/10.1016/j.watres.2018.09.029 otwiera się w nowej karcie
  2. APHA-AWWA-WEF (2005) Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington D.C. otwiera się w nowej karcie
  3. Arp HPH, Morin NAO, Hale SE, Okkenhaug G, Breivik K, Sparrevik M (2017) The mass flow and proposed management of bisphenol A in selected Norwegian waste streams. Waste Manag 60:775-785. https://doi.org/10.1016/j.wasman.2017.01.002 otwiera się w nowej karcie
  4. Asakura H, Matsuto T, Tanaka N (2004) Behavior of endocrine- disrupting chemicals in leachate from MSW landfill sites in Japan. Waste Manag 24(6):613-622. https://doi.org/10.1016/j.wasman. 2004.02.004 otwiera się w nowej karcie
  5. Badach H, Nazimek TA, Kamińska I (2007) Pesticide content in drinking water samples collected from orchard areas in Central Poland. Ann Agric Environ Med 14:109-114
  6. Besha AT, Gebreyohannes AY, Tufa RA, Bekele DN, Curcio E, Giorno L (2017) Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: a review. J Environ Chem Eng 5(3):2395- 2414. https://doi.org/10.1016/j.jece.2017.04.027 otwiera się w nowej karcie
  7. Boonnorat J, Techkarnjanaruk S, Honda R, Prachanurak P (2016) Effects of hydraulic retention time and carbon to nitrogen ratio on micro- pollutant biodegradation in membrane bioreactor for leachate treat- ment. Bioresour Technol 219:53-63. https://doi.org/10.1016/j. biortech.2016.07.094 otwiera się w nowej karcie
  8. Bui TT, Giovanoulis G, Cousins AP, Magnér J, Cousins IT, de Wit CA (2016) Human exposure, hazard and risk of alternative plasticizers to phthalate esters. Sci Total Environ 541:451-467. https://doi.org/ 10.1016/j.scitotenv.2015.09.036 otwiera się w nowej karcie
  9. Carić H (2016) Challenges and prospects of valuation -cruise ship pol- lution case. J Clean Prod 111:487-498. https://doi.org/10.1016/j. jclepro.2015.01.033 otwiera się w nowej karcie
  10. Chour V (2001) Water resources protection today: end-of-pipe technolo- gy and cleaner production. Case study of the Czech Odra river watershed. Water Sci Technol 43(5):145-152. https://doi.org/10. 2166/wst.2001.0272 otwiera się w nowej karcie
  11. Connon RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquat- ic environment. Sensors 12(9):12741-12771. https://doi.org/10. 3390/s120912741 otwiera się w nowej karcie
  12. Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA, Guillette LJ (2007) An ecological assessment of bisphenol-A: evi- dence from comparative biology. Reprod Toxicol 24(2):225-239. https://doi.org/10.1016/j.reprotox.2007.05.008 otwiera się w nowej karcie
  13. Cruise Baltic (2016) Cruise Baltic market review 2016; https://www. cruisebaltic.com/press/detail/13-03-2016-cruise-baltic-market- review-2016. Accessed 08.01.2019
  14. Cruise Baltic (2017) Cruise Baltic market review 2017; https://www. cruisebaltic.com/press/detail/2017-03-13-cruise-baltic-market- review-2017-results-revealed. Accessed 03.01.2019
  15. Dévier M-H, Mazellier P, Aït-Aïssa S, Budzinski H (2011) New chal- lenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. C R Chim 14(7-8):766-779. https://doi.org/10.1016/j.crci.2011.04.006 otwiera się w nowej karcie
  16. Directive 1999/31/EC, The European Parliament and the Council of the EU (1999) Council directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off J Eur Communities. https://doi.org/10.1017/ CBO9780511610851.045 otwiera się w nowej karcie
  17. Directive 1223/2009/EC, The European Parliament and the Council of the EU (2009) Regulation (EC) No 1223/2009 of the European parliament and of the council of 30 November 2009 on cosmetic products. Directive 2455/2001/EC, The European Parliament and the Council of the EU (2001) Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. In: Official journal of the European Communities http://eur-lex.europa.eu/pri/en/oj/dat/2003/ l_285/l_28520031101en00330037.pdf. Accessed 05.01.2019 otwiera się w nowej karcie
  18. Directive 2005/84/EC, The European Parliament and the Council of the EU (2005) Directive 2005/84/EC of the European parliament and of the council of 14 December 2005 amending for the 22nd time Council Directive 76/769/EEC on the approximationofthe laws, reg- ulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous sub- stances and preparations (phthalates in toys and childcare articles). otwiera się w nowej karcie
  19. Directive 2013/39/EU, The European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy Directive 2018/850/EU, The European Parliament and the Council of the EU (2018) Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste. otwiera się w nowej karcie
  20. Englert D, Zubrod JP, Schulz R, Bundschuh M (2013) Effects of munic- ipal wastewater on aquatic ecosystem structure and function in the receiving stream. Sci Total Environ 454-455:401-410 otwiera się w nowej karcie
  21. Fan H-j, Shu H-Y, Yang H-S, Chen W-C (2006) Characteristics of landfill leachates in Central Taiwan. Sci Total Environ 361(1-3):25-37. https://doi.org/10.1016/j.scitotenv.2005.09.033 otwiera się w nowej karcie
  22. Foster PMD, Cattley RC, Mylchreest E (2000) Effects of di-n-butyl phthalate (DBP) on male reproductive development in the rat: im- plications for human risk assessment. Food Chem Toxicol 38:S97- S99. https://doi.org/10.1016/S0278-6915(99)00128-3 otwiera się w nowej karcie
  23. Fudala-Ksiazek S, Pierpaoli M, Kulbat E, Luczkiewicz A (2016) A mod- ern solid waste management strategy -the generation of new by- products. Waste Manag 49:516-529. https://doi.org/10.1016/j. wasman.2016.01.022 otwiera się w nowej karcie
  24. Fudala-Ksiazek S, Pierpaoli M, Luczkiewicz A (2017) Fate and signifi- cance of phthalates and bisphenol A in liquid by-products generated during municipal solid waste mechanical-biological pre-treatment and disposal. Waste Manag 64:28-38. https://doi.org/10.1016/j. wasman.2017.03.040 otwiera się w nowej karcie
  25. Fudala-Ksiazek S, Sobaszek M, Luczkiewicz A, Pieczynska A, Ofiarska A, Fiszka-Borzyszkowska A, Sawczak M, Ficek M, Bogdanowicz R, Siedlecka EM (2018) Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre- treatment prior to the biological nitrogen removal. Chem Eng J 334: 1074-1084. https://doi.org/10.1016/j.cej.2017.09.196 otwiera się w nowej karcie
  26. Grandclement C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297- 317. https://doi.org/10.1016/j.watres.2017.01.005 otwiera się w nowej karcie
  27. Gray LE Jr, Ostby J, Furr J, Price M, Veeramachaneni DN, Parks L (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58(2):350-365 otwiera się w nowej karcie
  28. Hale RC (2003) Endocrine disruptors in wastewater and sludge treatment processes. Environ Health Perspect 111(10):125-126 otwiera się w nowej karcie
  29. Heinrich Z, Kozak T (2009) Unitary pollution charge typical of commu- nal sewage. Gaz, Woda i Tech Sanit 12:20-22 (in polish);
  30. HELCOM Maritime Assessment (2010) Hazardous substances in the Baltic Sea -An integrated thematic assessment of hazardous sub- stances in the Baltic Sea. In: Baltic Sea environment proceedings, vol 120B. Helsinki Commission, Helsinki HELCOM Maritime Assessment (2018) Maritime activities in the Baltic Sea. Helsinki Commission, Washington D.C. otwiera się w nowej karcie
  31. Hermabessiere LD, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G (2017) Occurrence and effects of plastic additives on marine en- vironments and organisms: a review. Chemosphere. 182:781-793. https://doi.org/10.1016/j.chemosphere.2017.05.096 otwiera się w nowej karcie
  32. Judd S (2008) The status of membrane bioreactor technology. Trends Biotechnol 26(2):109-116. https://doi.org/10.1016/j.tibtech.2007. 11.005 otwiera się w nowej karcie
  33. Kalmykova Y, Björklund K, Strömvall AM, Blom L (2013) Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater. Water Res 47(3): 1317-1328. https://doi.org/10.1016/j.watres.2012.11.054 otwiera się w nowej karcie
  34. Karim M, Mark JL (2017) A preliminary comparative analysis of MBR and CAS wastewater treatment systems. Int J Water Wastewater Treat 3(2). https://doi.org/10.16966/2381-5299.138 otwiera się w nowej karcie
  35. Kawai M, Purwanti IF, Nagao N, Slamet A, Hermana J, Toda T (2012) Seasonal variation in chemical properties and degradability by an- aerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia. J Environ Manag 110:267-275. https://doi.org/10.1016/ j.jenvman.2012.06.022 otwiera się w nowej karcie
  36. King County Wastewater Treatment Division (2007) Cruise ship waste- water management report. Department of Natural Resources and Parks, Seattle otwiera się w nowej karcie
  37. Kovalevskiene L, Letinauskiene I, Strakšienė G (2017) Cruise tourism in the Baltic Sea region: Lithuanian case. Vadyba J Manag 31:71-75
  38. Kulikowska D (2009) Charakterystyka oraz metody usuwaina zanieczyszczeń zanieczyszczeń organicznych z odcieków pochodzących z ustabilizowanych składowisk odpadów komunalnych. Ecol Chem Eng S 16(3):389-402
  39. Kulikowska D, Klimiuk E (2008) The effect of landfill age on municipal leachate composition. Bioresour Technol 99(13):5981-5985. https://doi.org/10.1016/j.biortech.2007.10.015 otwiera się w nowej karcie
  40. Kurata Y, Ono Y, Ono Y (2008) Occurrence of phenols in leachates from municipal solid waste landfill sites in Japan. J Mater Cycles Waste Manage 10(2):144-152. https://doi.org/10.1007/s10163-008-0200- x otwiera się w nowej karcie
  41. Larsson K, Lindh CH, Jönsson BAG, Giovanoulis G, Bibi M, Bottai M, Bergström A, Berglund M (2017) Phthalates, non-phthalate plasti- cizers and bisphenols in Swedish preschool dust in relation to chil- dren's exposure. Environ Int 102:114-124. https://doi.org/10.1016/j. envint.2017.02.006 otwiera się w nowej karcie
  42. Liu J, Zhang H, Zhang P, Wu Y, Gou X, Song Y, Tian Z, Zeng G (2017) Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: pollutant removal performances and mi- crobial community. Bioresour Technol 243:738-746. https://doi. org/10.1016/j.biortech.2017.07.002 otwiera się w nowej karcie
  43. Logar I, Brouwer R, Maurer M, Ort Ch (2014) Cost-Benefit Analysis of the Swiss National Policy on Reducing Micropollutants in Treated Wastewater. Environ Sci Technol 48(21):12500-12508 otwiera się w nowej karcie
  44. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473-474:619-641. https://doi.org/10. 1016/j.scitotenv.2013.12.065 otwiera się w nowej karcie
  45. Mandal P, Dubey BK, Gupta AK (2017) Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope. Waste Manag 69:250-273. https://doi.org/10.1016/j. wasman.2017.08.034 otwiera się w nowej karcie
  46. MEPC.227(64), The Marine Environment Protection Committee (2012) Guidelines on implementation of effluent standards and perfor- mance tests for sewage treatment plants. Resolution, Annex 22 otwiera się w nowej karcie
  47. Mitra S, Daltrophe NC, Gilron J (2016) A novel eductor-based MBR for the treatment of domestic wastewater. Water Res 100:65-79. https:// doi.org/10.1016/j.watres.2016.04.057 otwiera się w nowej karcie
  48. Morin N, Arp HPH, Hale SE (2015) Bisphenol A in solid waste materials, leachate water, and air particles from Norwegian waste-handling facilities: presence and partitioning behavior. Environ Sci Technol 49(13):7675-7683. https://doi.org/10.1021/acs.est.5b01307 otwiera się w nowej karcie
  49. Mróz D (2017) Port reception facilities for sewage -Port of Gdynia passenger traffic in Gdynia. Port Gdynia, Copenhagen, Denmark Mylchreest E, Wallace DG, Cattley RC, Foster PMD (2000) Dose- dependent alterations in androgen-regulated male reproductive de- velopment in rats exposed to di(n-butyl) phthalate during late ges- tation. Toxicol Sci 55(1):143-151. https://doi.org/10.1093/toxsci/ 55.1.143 otwiera się w nowej karcie
  50. Nödler K, Voutsa D, Licha T (2014) Polar organic micropollutants in the coastal environment of different marine systems. Mar Pollut Bull 85(1):50-59. https://doi.org/10.1016/j.marpolbul.2014.06.024 otwiera się w nowej karcie
  51. Perić T, Komadina P, Račić N (2016) Wastewater pollution from cruise ships in the Adriatic Sea. PROMET Traff Transp 28(4):425-433. https://doi.org/10.7307/ptt.v28i4.2087 otwiera się w nowej karcie
  52. Pihlajamäki M, Tynkkynen N (2011) The challenge of bridging science and policy in the Baltic Sea eutrophication governance in Finland: the perspective of science. AMBIO 40(2):191-199. https://doi.org/ 10.1007/s13280-010-0130-4 otwiera się w nowej karcie
  53. Prior S (2013) Discharge of sewage and grey water from vessels in Antarctic Treaty waters. In: XXXVI Antarctic Treaty Consultative Meeting Brussels 2013. ASOC, Washington D.C., U.S., pp 1-17 otwiera się w nowej karcie
  54. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468-493. https://doi.org/10.1016/j.jhazmat.2007.09. 077 otwiera się w nowej karcie
  55. Roslev P, Vorkamp K, Aarup J, Frederiksen K, Nielsen P (2007) Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Res 41:969-976. https://doi.org/10.1016/j. watres.2006.11.049 otwiera się w nowej karcie
  56. Schwarzbauer J, Heim S, Brinker S, Littke R (2002) Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res 36(9):2275-2287 otwiera się w nowej karcie
  57. Sun C, Leiknes T, Weitzenböck J, Thorstensen B (2010a) Development of a biofilm-MBR for shipboard wastewater treatment: the effect of process configuration. Desalination. 250(2):745-750. https://doi. org/10.1016/j.desal.2008.11.034 otwiera się w nowej karcie
  58. Sun C, Leiknes T, Weitzenböck J, Thorstensen B (2010b) Salinity effect on a biofilm-MBR process for shipboard wastewater treatment. Sep Purif Technol 72(3):380-387. https://doi.org/10.1016/j.seppur. 2010.03.010 otwiera się w nowej karcie
  59. Suzuki Y, Yoshinaga J, Mizumoto Y, Serizawa S, Shiraishi H (2011) Foetal exposure to phthalate esters and anogenital distance in male newborns. Int J Androl 35(3):236-244. https://doi.org/10.1111/j. 1365-2605.2011.01190.x otwiera się w nowej karcie
  60. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Mao CS, Redmon JB, Ternand CL, Sullivan S et al (2005) Decrease in anogenital distance among male infants with prenatal phthalate ex- posure. Environ Health Perspect 113(8):1056-1061. https://doi.org/ 10.1289/ehp.8100 otwiera się w nowej karcie
  61. Swinarski M, Makinia J, Czerwionka K, Chrzanowska M (2009) Industrial wastewater as an external carbon source for optimization of nitrogen removal at the "Wschod" WWTP in Gdansk (Poland). otwiera się w nowej karcie
  62. Water Sci Technol 59(1):57-63. https://doi.org/10.2166/wst.2009. 774 otwiera się w nowej karcie
  63. Teuten E, Saquing J, Knappe D et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Phil Trans Soc B 364:2027-2045. https://doi.org/10.1098/rstb.2008. 0284 otwiera się w nowej karcie
  64. Tröger R, Klöckner P, Ahrens L, Wiberg K (2018) Micropollutants in drinking water from source to tap -method development and appli- cation of a multiresidue screening method. Sci Total Environ 627: 1404-1432. https://doi.org/10.1016/j.scitotenv.2018.01.277 otwiera się w nowej karcie
  65. Urase T, Miyashita K (2003) Factors affecting the concentration of bisphenol A in leachates from solid waste disposal sites and its fate in treatment processes. J Mater Cycles Waste Manage 5(1):77-82. https://doi.org/10.1007/s101630300012 otwiera się w nowej karcie
  66. Westhof L, Köster S, Reich M (2016) Occurrence of micropollutants in the wastewater streams of cruise ships. Emerg Contaminants 2(4): 178-184. https://doi.org/10.1016/j.emcon.2016.10.001 otwiera się w nowej karcie
  67. Wilewska-Bien M, Granhag L, Jalkanen J-P, Johansson L, Andersson K (2018) Phosphorus flows on ships: case study from the Baltic Sea. Proc Inst Mech Eng M. https://doi.org/10.1177/1475090218761761 otwiera się w nowej karcie
  68. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV (2006) Landfill leachate treatment methods: a review. Environ Chem Lett 4(1):51-61. https://doi.org/10.1007/s10311-005-0016-z otwiera się w nowej karcie
  69. Wojciechowska E (2017) Potential and limits of landfill leachate treat- ment in a multi-stage subsurface flow constructed wetland - evaluation of organics and nitrogen removal. Bioresour Technol 236:146-154. https://doi.org/10.1016/j.biortech.2017.03.185 otwiera się w nowej karcie
  70. Wowkonowicz P, Kijeńska M (2017) Phthalate release in leachate from municipal landfills of Central Poland. PLoS One 12(3):e0174986. https://doi.org/10.1371/journal.pone.0174986 otwiera się w nowej karcie
  71. Yi X, Tran NH, Yin T, He Y, Gin KY-H (2017) Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res 121:46-60. https://doi.org/10.1016/j.watres.2017.05.008 otwiera się w nowej karcie
  72. Zhang C, Wang Y (2009) Removal of dissolved organic matter and phthalic acid esters from landfill leachate through a complexation- flocculation process. Waste Manag 29(1):110-116. https://doi.org/ 10.1016/j.wasman.2008.02.023 otwiera się w nowej karcie
  73. Publisher's note Springer Nature remains neutral with regard to jurisdic- tional claims in published maps and institutional affiliations. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 161 razy

Publikacje, które mogą cię zainteresować

Meta Tagi