Looking through the past: better knowledge retention for generative replay in continual learning - Publikacja - MOST Wiedzy

Wyszukiwarka

Looking through the past: better knowledge retention for generative replay in continual learning

Abstrakt

In this work, we improve the generative replay in a continual learning setting to perform well on challenging scenarios. Because of the growing complexity of continual learning tasks, it is becoming more popular, to apply the generative replay technique in the feature space instead of image space. Nevertheless, such an approach does not come without limitations. In particular, we notice the degradation of the continually trained model’s performance could be attributed to the fact that the generated features are far from the original ones when mapped to the latent space. Therefore, we propose three modifications that mitigate these issues. More specifically, we incorporate the distillation in latent space between the current and previous models to reduce feature drift. Additionally, a latent matching for the reconstruction and original data is proposed to improve generated features alignment. Further, based on the observation that the reconstructions are better for preserving knowledge, we add the cycling of generations through the previously trained model to make them closer to the original data. Our method outperforms other generative replay methods in various scenarios. Code available at https://github.com/valeriya-khan/looking-through-the-past.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (5)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE Access nr 12, strony 45309 - 45317,
ISSN: 2169-3536
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Khan V., Cygert S., Deja K., Trzciński T., Twardowski B.: Looking through the past: better knowledge retention for generative replay in continual learning// IEEE Access -Vol. 12, (2024), s.45309-45317
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/access.2024.3379148
Źródła finansowania:
  • Finansowane ze środków IDEAS NCBR
Weryfikacja:
Politechnika Gdańska

wyświetlono 57 razy

Publikacje, które mogą cię zainteresować

Meta Tagi