Abstrakt
A surrogate-based technique for fast multi-objective optimization of a multi-parameter planar Yagi-Uda antenna structure is presented. The proposed method utilizes response surface approximation (RSA) models constructed using training samples obtained from evaluation of the low-fidelity antenna model. Utilization of the RSA models allowsfor fast determination of the best possible trade-offs between conflicting objectives in multi-objective optimization framework. Computationally feasible construction of the RSA model for the multi-parameter case is possible by initial reduction of the antenna solution space. The initial set of Pareto-optimal designs is obtained by optimizing the model with a multi-objective evolutionary algorithm (MOEA). Surrogate-based optimization is subsequently carried out to elevate the selected designs to the high-fidelity antenna model level. The refined Pareto optimal-set for the considered Yagi-Uda antenna is generated atthe low computational cost corresponding to about 194 high-fidelity EM antenna simulations
Autorzy (3)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- materiały konferencyjne indeksowane w Web of Science
- Tytuł wydania:
- International Conference on Microwave Radar and Wireless Communications strony 1 - 4
- Język:
- angielski
- Rok wydania:
- 2014
- Opis bibliograficzny:
- Bekasiewicz A., Kozieł S., Zieniutycz W..: Low-Cost Multi-Objective Optimization Yagi-Uda Antenna in Multi-Dimensional Parameter Space, W: International Conference on Microwave Radar and Wireless Communications, 2014, ,.
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 95 razy