Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality - Publikacja - MOST Wiedzy

Wyszukiwarka

Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality

Abstrakt

High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram images were used from apical 4-chamber, apical 2-chamber and parasternal long-axis views sampled from 3530 adult patients. The data were extracted from CAMUS and Unity Imaging opensource datasets. For every raw image, additional grayscale block histograms were developed. For block histogram datasets, six classic machine learning algorithms were tested. Moreover, convolutional neural networks based on the pre-trained EfficientNetB4 architecture were developed for raw image datasets. Classic machine learning algorithms predicted image quality with 0.74 to 0.92 accuracy (AUC 0.81 to 0.96), whereas convolutional neural networks achieved between 0.74 and 0.89 prediction accuracy (AUC 0.79 to 0.95). Both approaches are accurate methods of echocardiogram image quality assessment. Moreover, this study is a proof of concept of a novel method of training classic machine learning algorithms on block histograms calculated from raw images. Automated echocardiogram image quality assessment methods may provide additional relevant information to the echocardiographer in daily clinical practice and improve reliability in clinical decision making.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
Life nr 14, wydanie 6,
ISSN: 2075-1729
ISSN:
2075-1729
Rok wydania:
2024
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/life14060761
Weryfikacja:
Brak weryfikacji

wyświetlono 35 razy

Publikacje, które mogą cię zainteresować

Meta Tagi