Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
Abstrakt
In recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for assessing their suitability incur significant time and cost. The emergence of Industry 4.0 has presented opportunities to address these drawbacks by leveraging machine learning (ML) methods. ML techniques have recently been used to forecast the properties and assess the importance of process parameters for efficient structural design and their broad applications. Given their wide range of applications, this work aims to perform a comprehensive analysis of ML algorithms used for predicting the mechanical properties of FRPs. The performance evaluation of various models was discussed, and a detailed analysis of their pros and cons was provided. Finally, the limitations that currently exist in these techniques were pinpointed, and suggestions were given to improve their prediction precision suitable for evaluating the mechanical properties of FRP components.
Cytowania
-
5
CrossRef
-
0
Web of Science
-
1 2
Scopus
Autorzy (5)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING
nr 117,
strony 237 - 251,
ISSN: 1134-3060 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Kazemi F., Asgarkhani N., Shafighfard T., Jankowski R., Yoo D.: Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers// ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING -, (2024),
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11831-024-10143-1
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 102 razy
Publikacje, które mogą cię zainteresować
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
- F. Kazemi,
- T. Shafighfard,
- D. Yoo