Modelization of Nutrient Removal Processes at a Large WWTP Using a Modified ASM2d Model - Publikacja - MOST Wiedzy

Wyszukiwarka

Modelization of Nutrient Removal Processes at a Large WWTP Using a Modified ASM2d Model

Abstrakt

The biodegradation of particulate substrates starts by a hydrolytic stage. Hydrolysis is a slow reaction and usually becomes the rate limiting step of the organic substrates biodegradation. The objective of this work was to evaluate a novel hydrolysis concept based on a modification of the activated sludge model (ASM2d) and to compare it with the original ASM2d model. The hydrolysis concept was developed in order to accurately predict the use of internal carbon sources in enhanced biological nutrient removal (BNR) processes at a full scale facility located in northern Poland. Both hydrolysis concepts were compared based on the accuracy of their predictions for the main processes taking place at a full-scale facility. From the comparison, it was observed that the modified ASM2d model presented similar predictions to those of the original ASM2d model on the behavior of chemical oxygen demand (COD), NH4-N, NO3-N, and PO4-P. However, the modified model proposed in this work yield better predictions of the oxygen uptake rate (OUR) (up to 5.6 and 5.7%) as well as in the phosphate release and uptake rates.

Cytowania

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 46 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
International Journal of Environmental Research and Public Health nr 15, wydanie 12, strony 1 - 8,
ISSN: 1660-4601
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Drewnowski J., Mąkinia J., Kopec L., Fernandez-Morales F.: Modelization of Nutrient Removal Processes at a Large WWTP Using a Modified ASM2d Model// International Journal of Environmental Research and Public Health. -Vol. 15, iss. 12 (2018), s.1-8
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ijerph15122817
Bibliografia: test
  1. Orhon, D.; Cokgor, E.U. COD fractionation in wastewater characterization -The state of the art. J. Chem. Technol. Biotechnol. 1997, 68, 283-293. [CrossRef] otwiera się w nowej karcie
  2. Gujer, W.; Henze, M.; Mino, T.; van Loosdrecht, M.C.M. Activated Sludge Model No. 3. Water Sci. Tech. 1999, 39, 183-193. [CrossRef] otwiera się w nowej karcie
  3. Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M.C.; Marais, G.v.R.; van Loosdrecht, M. ASM No. 2d. Water Sci. Tech. 1999, 39, 165-182. [CrossRef] otwiera się w nowej karcie
  4. Lagarde, F.; Tusseau-Vuillemin, M.-H.; Lessard, P.; Heduit, A.; Dutrop, F.; Mouchel J., M. Variability estimation of urban wastewater biodegradable fractions by respirometry. Water Res. 2005, 39, 4768-4778. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. EU Directive. The Council Directive 91/271/EEC Concerning Urban Waste-Water Treatment; Official Journal of the European Communities: Brussels, Belgium, 1991. otwiera się w nowej karcie
  6. Ekama, G.A.; Marais, G.v.R. Dynamic behavior of the activated-sludge process. J. Water Pollut. Control Fed. 1979, 51, 534-556.
  7. Gori, R.; Jiang, L.M.; Sobhani, R.; Rosso, D. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes. Water Res. 2011, 45, 5858-5872. [CrossRef] [PubMed] otwiera się w nowej karcie
  8. Sawyer, C.N. 1955 Bacterial nutrition and synthesis. In Biological Treatment of Sewage and Industrial Wastes;
  9. McCabe, J., Eckenfelder, W.W., Eds.; Reinhold Publishing Corp: New York, NY, USA, 1956; pp. 3-17. otwiera się w nowej karcie
  10. Bakos, V.; Kiss, B.; Jobbágy, A. Problems and causes of marginal nutrient availability in winery wastewater treatment. Acta Aliment. 2016, 45, 532-541. [CrossRef] otwiera się w nowej karcie
  11. Jobbágy, A.; Kiss, B.; Bakos, V. Conditions favoring proliferation of Glycogen Accumulating Organisms for excess biological carbon removal in treating nutrient deficient wastewater. Period. Polytech. Chem. Eng. 2017, 61, 149-155. otwiera się w nowej karcie
  12. Drewnowski, J.; Makinia, J. The role of biodegradable particulate and colloidal organic compounds in biological nutrient removal activated sludge systems. Int. J. Environ. Sci. Technol. 2014, 11, 1973-1988. [CrossRef] otwiera się w nowej karcie
  13. Orhon, D.; Cokgor, E.U.; Sozen, S. Dual hydrolysis model of the slowly biodegradable substrate in activated sludge. Bioresour. Technol. 1998, 12, 737-741. otwiera się w nowej karcie
  14. Drewnowski, J.; Remiszewska-Skwarek, A.; Fernandez-Morales, F.J. Model based evaluation of plant improvement at a large wastewater treatment plant (WWTP). J. Environ. Sci. Health Part A 2018, 53, 669-675. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Grady, C.P.L., Jr.; Daigger, G.T.; Love, N.G.; Filipe, C.D.M. Biological Wastewater Treatment, 3rd ed; CRC Press: Boca Raton, Florida, FL, USA, 2011.
  16. Drewnowski, J.; Makinia, J. The role of colloidal and particulate organic compounds in denitrification and EBPR occurring in a full-scale activated sludge system. Water Sci. Technol. 2011, 63, 318-324. [CrossRef] [PubMed] otwiera się w nowej karcie
  17. Mamais, D.; Jenkins, D.; Pitt, P. A rapid physical chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Res. 1993, 27, 195-197. [CrossRef] otwiera się w nowej karcie
  18. Swinarski, M.; Makinia, J.; Stensel, H.D.; Czerwionka, K.; Drewnowski, J. Modeling external carbon addition in biological nutrient removal processes with an extension of the international water association activated sludge model. Water Environ. Res. 2012, 84, 646-655. [CrossRef] otwiera się w nowej karcie
  19. Drewnowski, J.; Makinia, J. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Sci. Technol. 2013, 67, 2067-2074. [CrossRef] [PubMed] otwiera się w nowej karcie
  20. APHA Standard Methods for Examination of Water and Wastewater, 18th ed; otwiera się w nowej karcie
  21. Bennett, J.O.; Briggs, W.L. Using and Understanding Mathematics: A Quantitative Reasoning Approach, 6th ed.; Pearson: Boston, MA, USA, 2015.
  22. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308-313. [CrossRef] otwiera się w nowej karcie
  23. Rodríguez, L.; Villaseñor, J.; Buendía, I.M.; Fernández, F.J. Re-use of winery wastewaters for biological nutrient removal. Water Sci. Technol. 2007, 56, 95-102. otwiera się w nowej karcie
  24. Fernández, F.J.; Castro, M.C.; Villasenor, J.; Rodríguez, L. Agro-food wastewaters as external carbon source to enhance biological phosphorus removal. Chem. Eng. J. 2011, 166, 559-567. otwiera się w nowej karcie
  25. De Lucas, A.; Rodríguez, L.; Villaseñor, J.; Fernández, F.J. Biodegradation kinetics of stored wastewater substrates by a mixed microbial culture. Biochem. Eng. J. 2005, 26, 191-197. [CrossRef] otwiera się w nowej karcie
  26. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 90 razy

Publikacje, które mogą cię zainteresować

Meta Tagi