Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles - Publikacja - MOST Wiedzy

Wyszukiwarka

Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles

Abstrakt

Noble metal nanoparticles (NMNPs) enhanced TiO2 response and extended its activity under visible light. Photocatalytic activity of TiO2 modified with noble metal nanoparticles strongly depends on the physicochemical properties of NMNPs. Among others, the differences in the size of NMNPs seems to be one of the most important factors. In this view, the effect of the metal’s nanoparticles size, type and amount on TiO2 photocatalytic and biocidal activity was investigated. TiO2 modified with mono- and bimetallic nanoparticles of Pt, Cu and Ag were prepared using chemical and thermal reduction methods. Obtained nanocomposites were characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and diffuse-reflectance spectroscopy (DR/UV-Vis) techniques. The photocatalytic activity was examined in 2-propanol oxidation and hydrogen generation processes. The mechanism of modified TiO2 excitation was evaluated in action spectrum measurements during phenol oxidation. A possibility of using less energy-consuming light sources as a set of light-emitting diodes (LEDs) selected based on action spectrum results was examined. It was found that the differences in NMNPs size were the result of the reduction method. Moreover, coupling with a second metal strongly affected and differentiated the photocatalytic and biocidal activity of the obtained TiO2-based photocatalysts.

Cytowania

  • 2 7

    CrossRef

  • 0

    Web of Science

  • 2 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 67 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Nanomaterials strony 1 - 23,
ISSN: 2079-4991
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Wysocka I., Kowalska E., Ryl J., Nowaczyk G., Zielińska-Jurek A.: Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles// Nanomaterials. -, iss. 9 (2019), s.1-23
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/nano9081129
Bibliografia: test
  1. Pulit, J.; Banach, M.; Kowalski, Z. Właściwości Nanocząstek Miedzi, Platyny, Srebra, Złota i Palladu. Czas. Tech. Chem. 2011, 2, 202-203.
  2. Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Lett. 2006, 6, 833-838. [CrossRef] [PubMed] otwiera się w nowej karcie
  3. Hajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; Larramendi, I.R.; de Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial Properties of Nanoparticles. Trends Biotechnol. 2012, 30, 499-511. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic Photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. Nanomaterials 2019, 9, 1129 otwiera się w nowej karcie
  6. Devi, L.G.; Kavitha, R. A Review on Plasmonic Metal-TiO 2 Composite for Generation, Trapping, Storing and Dynamic Vectorial Transfer of Photogenerated Electrons across the Schottky Junction in a Photocatalytic System. Appl. Surf. Sci. 2016, 360, 601-622. [CrossRef] otwiera się w nowej karcie
  7. Clavero, C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nat. Photonics 2014, 8, 95-103. [CrossRef] otwiera się w nowej karcie
  8. Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668-677. [CrossRef] otwiera się w nowej karcie
  9. Langhammer, C.; Larsson, E.M. Nanoplasmonic in Situ Spectroscopy for Catalysis Applications. ACS Catal. 2012, 2, 2036-2045. [CrossRef] otwiera się w nowej karcie
  10. Kumar, S.G.; Rao, K.S.R.K. Comparison of Modification Strategies towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (TiO 2 , WO 3 and ZnO). otwiera się w nowej karcie
  11. Appl. Surf. Sci. 2016, 391, 124-128. otwiera się w nowej karcie
  12. Kowalska, E.; Mahaney, O.O.P.; Abe, R.; Ohtani, B. Visible-Light-Induced Photocatalysis through Surface Plasmon Excitation of Gold on Titania Surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344-2355. [CrossRef] otwiera się w nowej karcie
  13. Leong, K.H.; Gan, B.L.; Ibrahim, S.; Saravanan, P. Synthesis of Surface Plasmon Resonance (SPR) Triggered Ag/TiO 2 Photocatalyst for Degradation of Endocrine Disturbing Compounds. Appl. Surf. Sci. 2014, 319, 128-135. [CrossRef] otwiera się w nowej karcie
  14. Wei, Z.; Rosa, L.; Wang, K.; Endo, M.; Juodkazis, S.; Ohtani, B.; Kowalska, E. Size-Controlled Gold Nanoparticles on Octahedral Anatase Particles as Efficient Plasmonic Photocatalyst. Appl. Catal. B Environ. 2017, 206, 393-405. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Sarina, S.; Waclawik, E.R.; Zhu, H. Photocatalysis on Supported Gold and Silver Nanoparticles under Ultraviolet and Visible Light Irradiation. Green Chem. 2013, 15, 1814. [CrossRef] otwiera się w nowej karcie
  16. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO 2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919-9986. [CrossRef] otwiera się w nowej karcie
  17. Ohtani, B. Revisiting the Fundamental Physical Chemistry in Heterogeneous Photocatalysis: Its Thermodynamics and Kinetics. Phys. Chem. Chem. Phys. 2014, 16, 1788-1797. [CrossRef] [PubMed] otwiera się w nowej karcie
  18. Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium Dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1-21. [CrossRef] otwiera się w nowej karcie
  19. Mills, A.; Le Hunte, S. An Overview of Semiconductor Photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108, 1-35. [CrossRef] otwiera się w nowej karcie
  20. Zielińska-Jurek, A.; Hupka, J. Preparation and Characterization of Pt/Pd-Modified Titanium Dioxide Nanoparticles for Visible Light Irradiation. Catal. Today 2014, 230, 181-187. [CrossRef] otwiera się w nowej karcie
  21. Wei, Z.; Endo, M.; Wang, K.; Charbit, E.; Markowska-Szczupak, A.; Ohtani, B.; Kowalska, E. Noble Metal-Modified Octahedral Anatase Titania Particles with Enhanced Activity for Decomposition of Chemical and Microbiological Pollutants. Chem. Eng. J. 2017, 318, 121-134. [CrossRef] otwiera się w nowej karcie
  22. Dozzi, M.V.; Selli, E. Doping TiO2 with P-Block Elements: Effects on Photocatalytic Activity. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 13-28. [CrossRef] otwiera się w nowej karcie
  23. Kowalska, E.; Rau, S.; Ohtani, B. Plasmonic Titania Photocatalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape. J. Nanotechnol. 2012, 2012, 1-11. [CrossRef] otwiera się w nowej karcie
  24. Kaneko, M.; Ueno, H.; Nemoto, J. Schottky Junction/Ohmic Contact Behavior of a Nanoporous TiO2 Thin Film Photoanode in Contact with Redox Electrolyte Solutions. Beilstein J. Nanotechnol. 2011, 2, 127-134. [CrossRef] [PubMed] otwiera się w nowej karcie
  25. Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the Band Gap Energy and Flat Band Potential for Application of Modified TiO 2 Photoanodes in Water Photolysis. J. Power Sources 2008, 181, 46-55. [CrossRef] otwiera się w nowej karcie
  26. Chen, H.W.; Ku, Y.; Kuo, Y.L. Effect of Pt/TiO 2 Characteristics on Temporal Behavior of o-Cresol Decomposition by Visible Light-Induced Photocatalysis. Water Res. 2007, 41, 2069-2078. [CrossRef] [PubMed] otwiera się w nowej karcie
  27. Borowska, E.; Gomes, J.; Martins, R.C.; Quinta-ferreira, R.M.; Horn, H.; Gmurek, M. Solar Photocatalytic Degradation of Sulfamethoxazole. Catalysts 2019, 9, 500. [CrossRef] otwiera się w nowej karcie
  28. Zielińska-Jurek, A.; Wei, Z.; Wysocka, I.; Szweda, P.; Kowalska, E. The Effect of Nanoparticles Size on Photocatalytic and Antimicrobial Properties of Ag-Pt/TiO 2 Photocatalysts. Appl. Surf. Sci. 2015, 353, 317-325. [CrossRef] otwiera się w nowej karcie
  29. Foster, H.A.; Sheel, D.W.; Sheel, P.; Evans, P.; Varghese, S.; Rutschke, N.; Yates, H.M. Antimicrobial Activity of Titania/Silver and Titania/Copper Films Prepared by CVD. J. Photochem. Photobiol. A Chem. 2010, 216, 283-289. [CrossRef] otwiera się w nowej karcie
  30. Pulgarin, C.; Kiwi, J.; Nadtochenko, V. Mechanism of Photocatalytic Bacterial Inactivation on TiO 2 Films Involving Cell-Wall Damage and Lysis. Appl. Catal. B Environ. 2012, 128, 179-183. [CrossRef] otwiera się w nowej karcie
  31. Laxma Reddy, P.V.; Kavitha, B.; Kumar Reddy, P.A.; Kim, K.H. TiO 2 -Based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review. Environ. Res. 2017, 154, 296-303. [CrossRef] [PubMed] otwiera się w nowej karcie
  32. Gamage McEvoy, J.; Zhang, Z. Antimicrobial and Photocatalytic Disinfection Mechanisms in Silver-Modified Photocatalysts under Dark and Light Conditions. J. Photochem. Photobiol. C Photochem. Rev. 2014, 19, 62-75. [CrossRef] otwiera się w nowej karcie
  33. Gołabiewska, A.; Malankowska, A.; Jarek, M.; Lisowski, W.; Nowaczyk, G.; Jurga, S.; Zaleska-Medynska, A. The Effect of Gold Shape and Size on the Properties and Visible Light-Induced Photoactivity of Au-TiO 2 . Appl. Catal. B Environ. 2016, 196, 27-40. [CrossRef] otwiera się w nowej karcie
  34. Dong, C.; Lian, C.; Hu, S.; Deng, Z.; Gong, J.; Li, M.; Liu, H.; Xing, M.; Zhang, J. Size-Dependent Activity and Selectivity of Carbon Dioxide Photocatalytic Reduction over Platinum Nanoparticles. Nat. Commun. 2018, 9, 1-11. [CrossRef] [PubMed] otwiera się w nowej karcie
  35. Cybula, A.; Priebe, J.B.; Pohl, M.-M.; Sobczak, J.W.; Schneider, M.; Zielińska-Jurek, A.; Brückner, A.; Zaleska, A. The Effect of Calcination Temperature on Structure and Photocatalytic Properties of Au/Pd Nanoparticles Supported on TiO 2 . Appl. Catal. B Environ. 2014, 152, 202-211. [CrossRef] otwiera się w nowej karcie
  36. Parayil, S.K.; Kibombo, H.S.; Wu, C.M.; Peng, R.; Kindle, T.; Mishra, S.; Ahrenkiel, S.P.; Baltrusaitis, J.; Dimitrijevic, N.M.; Rajh, T.; et al. Synthesis-Dependent Oxidation State of Platinum on TiO 2 and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. J. Phys. Chem. C 2013, 117, 16850-16862. [CrossRef] otwiera się w nowej karcie
  37. Wysocka, I.; Kowalska, E.; Trzciński, K.; Łapiński, M.; Nowaczyk, G.; Zielińska-Jurek, A. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles. Nanomaterials 2018, 8, 28. [CrossRef] otwiera się w nowej karcie
  38. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic Reduction of CO 2 with H 2 0 on Various Titanium Oxide Catalysts. J. Electroanal. Chem. 1995, 396, 21-26. [CrossRef] otwiera się w nowej karcie
  39. Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Study of the Phenol Photocatalytic Degradation over TiO 2 Modified by Sulfation, Fluorination, and Platinum Nanoparticles Photodeposition. Appl. Catal. B Environ. 2015, 179, 305-312. [CrossRef] otwiera się w nowej karcie
  40. Yadav, H.M.; Otari, S.V.; Koli, V.B.; Mali, S.S.; Hong, C.K.; Pawar, S.H.; Delekar, S.D. Preparation and Characterization of Copper-Doped Anatase TiO 2 Nanoparticles with Visible Light Photocatalytic Antibacterial Activity. J. Photochem. Photobiol. A Chem. 2014, 280, 32-38. [CrossRef] otwiera się w nowej karcie
  41. Hu, Y.; Song, X.; Jiang, S.; Wei, C. Enhanced Photocatalytic Activity of Pt-Doped TiO 2 for NOxoxidation Both under UV and Visible Light Irradiation: A Synergistic Effect of Lattice Pt4+and Surface PtO. Chem. Eng. J. 2015, 274, 102-112. [CrossRef] otwiera się w nowej karcie
  42. Gołąbiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Zielińska-Jurek, A.; Zaleska, A. Visible Light Photoactivity of TiO 2 Loaded with Monometallic (Au or Pt) and Bimetallic (Au/Pt) Nanoparticles. Appl. Surf. Sci. 2014, 317, 1131-1142. [CrossRef] otwiera się w nowej karcie
  43. Galhenage, R.P.; Yan, H.; Tenney, S.A.; Park, N.; Henkelman, G.; Albrecht, P.; Mullins, D.R.; Chen, D.A. Understanding the Nucleation and Growth of Metals on TiO 2 : Co Compared to Au, Ni, and Pt. J. Phys. Chem. C 2013, 117, 7191-7201. [CrossRef] otwiera się w nowej karcie
  44. Luo, K.; St. Clair, T.P.; Lai, X.; Goodman, D.W. Silver Growth on TiO 2 (110) (1 × 1) and (1 × 2). J. Phys. Chem. B 2000, 104, 3050-3057. [CrossRef] otwiera się w nowej karcie
  45. Zielińska-Jurek, A.; Kowalska, E.; Sobczak, J.W.; Lisowski, W.; Ohtani, B.; Zaleska, A. Preparation and Characterization of Monometallic (Au) and Bimetallic (Ag/Au) Modified-Titania Photocatalysts Activated by Visible Light. Appl. Catal. B Environ. 2011, 101, 504-514. [CrossRef] otwiera się w nowej karcie
  46. Kowalska, E.; Wei, Z.; Karabiyik, B.; Herissan, A.; Janczarek, M.; Endo, M.; Markowska-Szczupak, A.; Remita, H.; Ohtani, B. Silver-Modified Titania with Enhanced Photocatalytic and Antimicrobial Properties under UV and Visible Light Irradiation. Catal. Today 2015, 252, 136-142. [CrossRef] otwiera się w nowej karcie
  47. He, Z.; Fu, J.; Cheng, B.; Yu, J.; Cao, S. Cu 2 (OH) 2 CO 3 Clusters: Novel Noble-Metal-Free Cocatalysts for Efficient Photocatalytic Hydrogen Production from Water Splitting. Appl. Catal. B Environ. 2017, 205, 104-111. [CrossRef] otwiera się w nowej karcie
  48. Athawale, A.A.; Katre, P.P.; Kumar, M.; Majumdar, M.B. Synthesis of CTAB-IPA Reduced Copper Nanoparticles. Mater. Chem. Phys. 2005, 91, 507-512. [CrossRef] otwiera się w nowej karcie
  49. Giuffrida, S.; Costanzo, L.L.; Ventimiglia, G.; Bongiorno, C. Photochemical Synthesis of Copper Nanoparticles Incorporated in Poly(Vinyl Pyrrolidone). J. Nanoparticle Res. 2008, 10, 1183-1192. [CrossRef] otwiera się w nowej karcie
  50. Kubacka, A.; Muñoz-Batista, M.J.; Fernández-García, M.; Obregón, S.; Colón, G. Evolution of H2 Photoproduction with Cu Content on CuOx-TiO 2 Composite Catalysts Prepared by a Microemulsion Method. Appl. Catal. B Environ. 2015, 163, 214-222. [CrossRef] otwiera się w nowej karcie
  51. Wei, Z.; Janczarek, M.; Endo, M.; Colbeau-Justin, C.; Ohtani, B.; Kowalska, E. Silver-Modified Octahedral Anatase Particles as Plasmonic Photocatalyst. Catal. Today 2018, 310, 19-25. [CrossRef] [PubMed] otwiera się w nowej karcie
  52. Erdem, B.; Hunsicker, R.A.; Simmons, G.W.; Sudol, E.D.; Dimonie, V.L.; El-Aasser, M.S. XPS and FTIR Surface Characterization of TiO 2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17, 2664-2669. [CrossRef] otwiera się w nowej karcie
  53. Xiong, L.; Li, J.; Yang, B.; Yu, Y. Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. J. Nanomater. 2012, 2012, 1-13. [CrossRef] otwiera się w nowej karcie
  54. Rjeb, A.; Letarte, S.; Tajounte, L.; El Idrissi, M.C.; Adnot, A.; Roy, D.; Claire, Y.; Kaloustian, J. Polypropylene Natural Aging Studied by X-ray Photoelectron Spectroscopy. J. Electron. Spectros. Relat. Phenom. 2000, 107, 221-230. [CrossRef] otwiera się w nowej karcie
  55. López, R.; Gómez, R.; Llanos, M.E. Photophysical and Photocatalytic Properties of Nanosized Copper-Doped Titania Sol-Gel Catalysts. Catal. Today 2010, 148, 103-108. [CrossRef] otwiera się w nowej karcie
  56. Ahmed, L.M.; Ivanova, I.; Hussein, F.H.; Bahnemann, D.W. Role of Platinum Deposited on TiO 2 in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions. Int. J. Photoenergy 2014, 2014, 1-9. [CrossRef] otwiera się w nowej karcie
  57. Wang, K.; Wei, Z.; Ohtani, B.; Kowalska, E. Interparticle Electron Transfer in Methanol Dehydrogenation on Platinum-Loaded Titania Particles Prepared from P25. Catal. Today 2018, 303, 327-333. [CrossRef] otwiera się w nowej karcie
  58. Sun, B.; Vorontsov, A.V.; Smirniotis, P.G. Role of Platinum Deposited on TiO 2 in Phenol Photocatalytic Oxidation. Langmuir 2003, 19, 3151-3156. [CrossRef] otwiera się w nowej karcie
  59. Shiraishi, Y.; Sakamoto, H.; Sugano, Y.; Ichikawa, S.; Hirai, T. Pt-Cu Bimetallic Alloy Nanoparticles Supported on Anatase TiO 2 : Highly Active Catalysts for Aerobic Oxidation Driven by Visible Light. ACS Nano 2013, 7, 9287-9297. [CrossRef] [PubMed] otwiera się w nowej karcie
  60. Ioannides, T.; Verykios, X.E. Charge Transfer in Metal Catalysts Supported on Doped TiO 2 : A Theoretical Approach Based on Metal-Semiconductor Contact Theory. J. Catal. 1996, 161, 560-569. [CrossRef] otwiera się w nowej karcie
  61. Zhdanov, V.P. Nm-Sized Metal Particles on a Semiconductor Surface, Schottky Model, Etc. Surf. Sci. 2002, 512, 6-9. [CrossRef] otwiera się w nowej karcie
  62. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-Light Activation of TiO 2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1-29. [CrossRef] otwiera się w nowej karcie
  63. Shiraishi, Y.; Sakamoto, H.; Fujiwara, K.; Ichikawa, S.; Hirai, T. Selective Photocatalytic Oxidation of Aniline to Nitrosobenzene by Pt Nanoparticles Supported on TiO 2 under Visible Light Irradiation. ACS Catal. 2014, 4, 2418-2425. [CrossRef] otwiera się w nowej karcie
  64. Lv, J.; Gao, H.; Wang, H.; Lu, X.; Xu, G.; Wang, D.; Chen, Z.; Zhang, X.; Zheng, Z.; Wu, Y. Controlled Deposition and Enhanced Visible Light Photocatalytic Performance of Pt-Modified TiO 2 Nanotube Arrays. Appl. Surf. Sci. 2015, 351, 225-231. [CrossRef] otwiera się w nowej karcie
  65. Lee, J.S.; You, K.H.; Park, C.B. Highly Photoactive, Low Bandgap TiO 2 Nanoparticles Wrapped by Graphene. Adv. Mater. 2012, 24, 1084-1088. [CrossRef] [PubMed] otwiera się w nowej karcie
  66. Yoon, H.; Kim, D.; Park, M.; Kim, J.; Kim, J.; Srituravanich, W.; Shin, B.; Jung, Y.; Jeon, S. Extraordinary Enhancement of UV Absorption in TiO 2 Nanoparticles Enabled by Low-Oxidized Graphene Nanodots. J. Phys. Chem. C 2018, 122, 12114-12121. [CrossRef] otwiera się w nowej karcie
  67. Nagakawa, H.; Ochiai, T.; Takekuma, Y.; Konuma, S.; Nagata, M. Effective Photocatalytic Hydrogen Evolution by Cascadal Carrier Transfer in the Reverse Direction. ACS Omega 2018, 3, 12770-12777. [CrossRef] otwiera się w nowej karcie
  68. Nagakawa, H.; Ochiai, T.; Konuma, S.; Nagata, M. Visible-Light Overall Water Splitting by CdS/WO 3 /CdWO otwiera się w nowej karcie
  69. Tricomposite Photocatalyst Suppressing Photocorrosion. ACS Appl. Energy Mater. 2018, 1, 6730-6735. [CrossRef] otwiera się w nowej karcie
  70. Martín-Sómer, M.; Pablos, C.; van Grieken, R.; Marugán, J. Influence of Light Distribution on the Performance of Photocatalytic Reactors: LED vs. Mercury Lamps. Appl. Catal. B Environ. 2017, 215, 1-7. [CrossRef] otwiera się w nowej karcie
  71. Yang, M.Q.; Zhang, Y.; Zhang, N.; Tang, Z.R.; Xu, Y.J. Visible-Light-Driven Oxidation of Primary C-H Bonds over CdS with Dual Co-Catalysts Graphene and TiO 2 . Sci. Rep. 2013, 3, 3314. [CrossRef] otwiera się w nowej karcie
  72. Kolobov, N.S.; Svintsitskiy, D.A.; Kozlova, E.A.; Selishchev, D.S.; Kozlov, D.V. UV-LED Photocatalytic Oxidation of Carbon Monoxide over TiO 2 supported with Noble Metal Nanoparticles. Chem. Eng. J. 2017, 314, 600-611. [CrossRef] otwiera się w nowej karcie
  73. Vamvasakis, I.; Liu, B.; Armatas, G.S. Size Effects of Platinum Nanoparticles in the Photocatalytic Hydrogen Production Over 3D Mesoporous Networks of CdS and Pt Nanojunctions. Adv. Funct. Mater. 2016, 26, 8062-8071. [CrossRef] otwiera się w nowej karcie
  74. Xing, J.; Li, Y.H.; Jiang, H.B.; Wang, Y.; Yang, H.G. The Size and Valence State Effect of Pt on Photocatalytic H 2 Evolution over Platinized TiO 2 photocatalyst. Int. J. Hydrogen Energy 2014, 39, 1237-1242. [CrossRef] otwiera się w nowej karcie
  75. Wu, D.; You, H.; Jin, D.; Li, X. Enhanced Inactivation of Escherichia Coli with Ag-Coated TiO 2 Thin Film under UV-C Irradiation. J. Photochem. Photobiol. A Chem. 2011, 217, 177-183. [CrossRef] otwiera się w nowej karcie
  76. Gallo, A.; Marelli, M.; Psaro, R.; Gombac, V.; Montini, T.; Fornasiero, P.; Pievo, R.; Santo, V.D. Bimetallic Au-Pt/TiO 2 Photocatalysts Active under UV-A and Simulated Sunlight for H 2 Production from Ethanol. Green Chem. 2012, 14, 330-333. [CrossRef] otwiera się w nowej karcie
  77. Duan, K.; Liu, Z.; Li, J.; Yuan, L.; Hu, H.; Woo, S.I. Novel Pd-Au/for the Selective Catalytic Reduction of NOxby H 2 . Catal. Commun. 2014, 57, 19-22. [CrossRef] otwiera się w nowej karcie
  78. Oros-Ruiz, S.; Zanella, R.; Collins, S.E.; Hernández-Gordillo, A.; Gómez, R. Photocatalytic Hydrogen Production by Au-MxOy(MAg, Cu, Ni) Catalysts Supported on TiO 2 . Catal. Commun. 2014, 47, 1-6. [CrossRef] otwiera się w nowej karcie
  79. Zielińska-Jurek, A. Progress, Challenge, and Perspective of Bimetallic TiO 2 -Based Photocatalysts. J. Nanomater. 2014, 2014, 1-17. [CrossRef] otwiera się w nowej karcie
  80. Nadeem, M.A.; Al-Oufi, M.; Wahab, A.K.; Anjum, D.; Idriss, H. Hydrogen Production on Ag-Pd/TiO 2 Bimetallic Catalysts: Is There a Combined Effect of Surface Plasmon Resonance with Schottky Mechanism on the Photo-Catalytic Activity? ChemistrySelect 2017, 2, 2754-2762. [CrossRef] otwiera się w nowej karcie
  81. Kowalska, E.; Janczarek, M.; Rosa, L.; Juodkazis, S.; Ohtani, B. Mono-and Bi-Metallic Plasmonic Photocatalysts for Degradation of Organic Compounds under UV and Visible Light Irradiation. Catal. Today 2014, 230, 131-137. [CrossRef] otwiera się w nowej karcie
  82. Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ. Toxicol. Chem. 2008, 27, 1825-1851. [CrossRef] otwiera się w nowej karcie
  83. Bhatt, I.; Tripathi, B.N. Interaction of Engineered Nanoparticles with Various Components of the Environment and Possible Strategies for Their Risk Assessment. Chemosphere 2011, 82, 308-317. [CrossRef] otwiera się w nowej karcie
  84. Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial Silver Nanomaterials. Coord. Chem. Rev. 2018, 357, 1-17. [CrossRef] otwiera się w nowej karcie
  85. Pietrzak, K.; Twarużek, M.; Czyżowska, A.; Kosicki, R.; Gutarowska, B. Influence of Silver Nanoparticles on Metabolism and Toxicity of Moulds. Acta Biochim. Pol. 2015, 62, 851-857. [CrossRef] [PubMed] otwiera się w nowej karcie
  86. Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Hossini, H.; Stelling, J.; Amjad Kamal, M. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms. Curr. Drug Metab. 2017, 18, 120-128. [CrossRef] [PubMed] otwiera się w nowej karcie
  87. Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227-1249. [CrossRef] [PubMed] otwiera się w nowej karcie
  88. Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-Spectrum Bioactivities of Silver Nanoparticles: The Emerging Trends and Future Prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951-1961. [CrossRef] [PubMed] otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 211 razy

Publikacje, które mogą cię zainteresować

Meta Tagi