Abstrakt
Visual object tracking is still considered a challenging task in computer vision research society. The object of interest undergoes significant appearance changes because of illumination variation, deformation, motion blur, background clutter, and occlusion. Kernelized correlation filter- (KCF) based tracking schemes have shown good performance in recent years. The accuracy and robustness of these trackers can be further enhanced by incorporating multiple cues from the response map. Response map computation is the complementary step in KCF-based tracking schemes, and it contains a bundle of information. The majority of the tracking methods based on KCF estimate the target location by fetching a single cue-like peak correlation value from the response map. This paper proposes to mine the response map in-depth to fetch multiple cues about the target model. Furthermore, a new criterion based on the hybridization of multiple cues i.e., average peak correlation energy (APCE) and confidence of squared response map (CSRM), is presented to enhance the tracking efficiency. We update the following tracking modules based on hybridized criterion: (i) occlusion detection, (ii) adaptive learning rate adjustment, (iii) drift handling using adaptive learning rate, (iv) handling, and (v) scale estimation. We integrate all these modules to propose a new tracking scheme. The proposed tracker is evaluated on challenging videos selected from three standard datasets, i.e., OTB-50, OTB-100, and TC-128. A comparison of the proposed tracking scheme with other state-of-the-art methods is also presented in this paper. Our method improved considerably by achieving a center location error of 16.06, distance precision of 0.889, and overlap success rate of 0.824.
Cytowania
-
5
CrossRef
-
0
Web of Science
-
7
Scopus
Autorzy (9)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/electronics11030345
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Electronics
nr 11,
ISSN: 2079-9292 - Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Khan B., Jalil A., Ali A., Alkhaledi K., Mehmood K., Cheema K. M., Murad M., Tariq H., El-Sherbeeny A. M.: Multiple Cues-Based Robust Visual Object Tracking Method// Electronics -Vol. 11,iss. 3 (2022), s.345-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/electronics11030345
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 146 razy
Publikacje, które mogą cię zainteresować
From Knowledge based Vision Systems to Cognitive Vision Systems: A Review
- T. Souza,
- C. De,
- C. Sanin
- + 1 autorów
Pedestrian detection in low-resolution thermal images
- A. Górska,
- P. Guzal,
- I. Namiotko
- + 3 autorów
The Innovative Faculty for Innovative Technologies
- P. Odya,
- P. Szczuko,
- A. Czyżewski
- + 3 autorów